
Programming Methodology Notes Page 1

PROGRAMMING METHODOLOGY

CHAPTER ONE

Overview of Computer Programming Methodology

1.1 What is Computer Programming Methodology

A Methodology is a system of methods with its orderly and integrated collection of various methods, tools and

notations. A computer program is a series of instructions written in the language of the computer which

specifies processing operations that the computer is to carry out on data. It is a coded list of instructions that

tell" a computer how to perform a set of calculations or operations.

Programming is the process of producing a computer program. Programming involves the following activities;

writing a program, compiling the program, running the program, debugging the programs. The whole process

is repeated until the program is finished.

1.2. Problem Solving with Computer;

There are a number of concepts of relevance to problem solving using computers. Two particular concepts

includes computability and complexity. A problem is said to be computable if it can in principle be performed

by a machine. Some mathematical functions are not computable. The complexity of a problem is measured in

terms of resources required, time and storage

The steps involved in solving a problem using a computer program includes;

Step 1. Define the Problem: State in the clearest possible terms the problem you wish to solve. It is impossible

to write a computer program to solve a problem that has been ambiguously or imprecisely stated.

Step 2. Devise an Algorithm: An algorithm is a step-by-step procedure for solving the problem. Each of the

steps must be a simple operation which the computer is capable of doing. A universally-used

representation of an algorithm is a flowchart or flow diagram, in which boxes representing procedural

steps are connected by arrows indicating the proper sequence of the steps. In many problems you will

need to define a mathematical procedure, expressed in strictly numerical terms since the use of

computers to do higher level analytic processes such as solving algebraic equations or doing integrals

in a non-numerical fashion is relatively limited. The Algorithm can also be represented using Pseudo-

code

Step 3. Code the Program: The steps in an algorithm, translated into a series of instructions to the computer,

comprise the computer program. There are many languages in which computer programs can be

coded, each with its own syntax, vocabulary, and special features.

Step 4. Debug the Program: Most programs of any length don't work properly the first time they are run and

must therefore be debugged." Often, during the debugging phase, errors and ambiguities in the

Chapter Objectives

By the end of this chapter the learner should be able to;

 Describe the steps involved in solving a problem using a computer.

 Be able to represent the Algorithm to solve a problem in flow-charts and Pseudo-code.

 Be able to describe and differentiate the types of programming methods.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 2

original statement of the problem reveal themselves, calling for basic revisions in the solution

algorithm.

Step 5. Run the Program: After the program has been fully debugged you run it, possibly using many sets of

input data. This step may take anywhere from a few seconds to many hours depending on the

complexity of the problem and the speed of the computer.

Step 6. Analyze the Results: Often the output from a computer program requires considerable further analysis.

In some cases, even though the program worked perfectly, you may find that you solved the “wrong"

problem. There is an acronym well known to computer users: GIGO, which stands for “garbage in,

garbage out."

1.2.1. Problem Algorithm

An Algorithm is a logical sequence of discrete steps that describe a complete solution to a given problem in a

finite amount of time independently of the software or hardware of the computer. It is the set of rules that

define how a particular problem can be solved in finite number of steps. Algorithms are very essential as they

instructs the computer what specific steps it needs to perform to carry out a particular task or solve a problem.

Every algorithm should have the following five characteristics: Input, Output, Definiteness, Effectiveness and

Termination. An Algorithm has the following properties;

 It must be precise and unambiguous

 It must give the correct solution in all cases

 It must eventually end.

Efficiency and Analysis of the Algorithm

The efficiency of an Algorithm means how fast it can produce the correct results for the given problem. The

Algorithm efficiency depends upon its time complexity and space complexity. The complexity of an algorithm

is a function that provides the running time and space for data, depending on the size provided by us. Two

important factors for judging the complexity of an Algorithm are; space complexity which refers to the

amount of memory required by the algorithm for it execution and generation of the final output and time

Complexity which refers to the amount of computer time required by an algorithm for its execution, which

includes both the compile time and run time. The compile time of an algorithm does not depend on the

instance characteristics of the algorithm. The run time of an algorithm is estimated by determining the number

of various operation, such as addition, subtraction, multiplication, division, load and store executed by it.

The analysis of an algorithm determines the amount of resources, such as time and space required by it for its

execution. Generally, the algorithms are formulated to work with the inputs or arbitrary length. Algorithm

analysis provides theoretical estimates required by an algorithm to solve a problem. The steps of an

Algorithm, they can be presented using Flow charts and pseudo-codes.

1.3. Flow Charts

A flow chart is a traditional means of showing in diagrammatic form, the sequence of steps to be undertaken

in solving a problem. Flowcharts or flow diagrams are important tools in writing a computer program. A

flowchart allows you to plan the sequence of steps in a program before writing it. The flowchart serves as a

visual representation which many programmers find indispensable in planning any program of at least

moderate complexity.

1.3.1. Elements of a Flowchart.

A flowchart consists of a set of boxes, the shapes of which indicate specific operations. The separate boxes are

connected with arrows to show the sequences in which the various operations are performed. We use these

standard symbols:

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 3

Shape Name Description

Rectangle Process symbol: Used to represent any kind of processing

activity. Details are written in the box

Diamond: The decision Symbol: Used where a decision has to be

made in selecting the subsequent path to be followed.

 Used to show the flow/ path of ma sequence of symbols.

 Vertical line without arrow head are assumes t flow top

to bottom.

 Horizontal lines without arrow heads are assumed to

flow left to right.

 Every operation box must have at least one incoming or

outgoing arrow. Any arrow leaving a decision box must

be labeled with the decision result which will cause that

path to be followed.

Parallelogram

Input/output symbol: Used where data input is to be

performed

Oval

The Terminal symbol: Used as the first or last symbol in a

program or separately drawn program module

Or

Small Circle

Connector symbol:

Exit to or entry from another part of the chart

 Used to add explanatory notes or description,

Stages of Flow charting

Program flowcharts are generally produced in two stages representing different levels of details. The first step

produces the outline program flow chart which represents the first stage of turning the systems flow charts

into the necessary detail to enable the programmer to write the programs. It represents the actual computer

operations in an outline only. The second step produces the detailed program flow chart which is prepared

from the outline charts and contains the detailed computer steps necessary to perform a particular task. It is

from thischarts that the programmer will prepare the program code

Calculate wages

Is the transaction

a credit?

Start
Stop

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 4

Limitations of program flowcharts

• Not easily translated into programming language.

1.4. Pseudo code

An alternative method of representing an Algorithm to the flowcharts. Pseudo code is halfway between

English and programming language and is based upon a few simple grammatical construction which avoid the

ambiguities of English but which can be easily converted into computer programming language. Pseudo code

is an informal high-level description of a computer programming algorithm, which omits details that are not

essential for human understanding of the algorithm, is easier for humans to understand than conventional

programming language code, is compact and environment-independent description of the key principles of an

algorithm and resembles skeleton programs including dummy code and can be compiled without errors.

Pseudo code assumes that programming procedures no matter how complex may be reduced to a combination

of controlled sequences, selection, or repetition of basic operations. This gives rise to the control structures

found in pseudo-code.

1.5. Program Control Structures

Control Structure Pseudo code Flow Chart

Sequence:

In the absence of selection, or

repetition, program statements

are executed in the sequence in

which the appear in the program

1
st
 Instruction

2
nd

 Instruction

3
rd

 Instruction

Selection

Part of decision making and

allows alternative actions to be

taken according to the conditions

that exist at particular stages in

program execution

IF

 condition

THEN

 actions

ELSE

 actions

ENDIF

Or

CASE

 a). Actions

 b). Actions

 c). Actions

 d). Actions

ENDCASE

Repetition also called “looping”

There are many programming

problems in which the same

sequence of statements needs to

be performed again and again for

a definite or indefinite number

of times

WHILE

 condition

DO

 Actions

ENDWHILE

?

No Yes

?

?

a b c

No

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 5

REPEAT

 actions

UNTIL

 condition

1.6. Programming Methods

1.6.1 Top-down and Bottom-up methodology

A top-down approach (is also known as step-wise design) is essentially the breaking down of a system to gain

insight into its compositional sub-systems. In a top-down approach an overview of the system is formulated,

specifying but not detailing any first-level subsystems. Each subsystem is then refined in yet greater detail,

sometimes in many additional subsystem levels, until the entire specification is reduced to base elements. A

top-down model is often specified with the assistance of "black boxes", these make it easier to manipulate.

However, black boxes may fail to elucidate elementary mechanisms or be detailed enough to realistically

validate the model.

Top-down-design starts with a description of the overall system and usually consists of a hierarchical structure

which contains more detailed descriptions of the system at each lower level. The lower level design details

continue until further subdivision is no longer possible, i.e., until the system is described in terms of its

"atomic" parts. This method involves a hierarchical or tree-like structure for a system as illustrated by the

following diagram:

At the top level, we have that part of the system which deals with the overall system; a kind of system

overview or main top-level module.

Top down programming method process

1. Define exactly what data the program will get and what it has to do with them.

2. If the task is simple enough, write the program code.

3. Otherwise, split the task into smaller parts and define exactly the duty of each part and interface to the rest

of the program.

4. Repeat the steps 1–4 separately for each subtask.

Advantages of the Top-Down Design Method

• It is easier to comprehend the solution of a smaller and less complicated problem than to grasp the solution

of a large and complex problem. Separating the low level work from the higher level abstractions leads to a

modular design. Modular design means development can be self contained. Much less time consuming

(each programmer is only involved in a part of the big project).

?

No

Yes

 w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 6

• It is easier to test segments of solutions, rather than the entire solution at once. This method allows one to

test the solution of each sub-problem separately until the entire solution has been tested.

• It is often possible to simplify the logical steps of each sub-problem, so that when taken as a whole, the

entire solution has less complex logic and hence easier to develop. A simplified solution takes less time to

develop and will be more readable.

• The program will be easier to maintain. If errors occur in the output it is easy to identify the errors

generated from each of the modules / sub-programs of the entire program.

A bottom-up approach is the piecing together of systems to give rise to grander systems, thus making the

original systems sub-systems of the emergent system. In a bottom-up approach the individual base elements of

the system are first specified in great detail. These elements are then linked together to form larger

subsystems, which then in turn are linked, sometimes in many levels, until a complete top-level system is

formed. This strategy often resembles a "seed" model, whereby the beginnings are small but eventually grow

in complexity and completeness. However, "organic strategies" may result in a tangle of elements and

subsystems, developed in isolation and subject to local optimization as opposed to meeting a global purpose.

Top-down is a programming style, the mainstay of traditional procedural languages, in which design begins

by specifying complex pieces and then dividing them into successively smaller pieces. The technique for

writing a program using top-down methods is to write a main procedure that names all the major functions it

will need. Later, the programming team looks at the requirements of each of those functions and the process is

repeated. These compartmentalized sub-routines eventually will perform actions so simple they can be easily

and concisely coded. When all the various sub-routines have been coded the program is ready for testing. By

defining how the application comes together at a high level, lower level work can be self-contained. By

defining how the lower level abstractions are expected to integrate into higher level ones, interfaces become

clearly defined.

Top-down approaches emphasize planning and a complete understanding of the system. It is inherent that no

coding can begin until a sufficient level of detail has been reached in the design of at least some part of the

system. The Top-Down Approach is done by attaching the stubs in place of the module. This, however, delays

testing of the ultimate functional units of a system until significant design is complete. Bottom-up emphasizes

coding and early testing, which can begin as soon as the first module has been specified. This approach,

however, runs the risk that modules may be coded without having a clear idea of how they link to other parts

of the system, and that such linking may not be as easy as first thought. Re-usability of code is one of the main

benefits of the bottom-up approach

1.6.2. Structured programming Method

Structured programming is a special type of procedural programming. It provides additional tools to manage

the problems that larger programs were creating. Structured programming requires that programmers break

program structure into small pieces of code that are easily understood. It also frowns upon the use of global

variables and instead uses variables local to each subroutine.

Structured programming was developed during the 1950s after Edgar Dijkstra‟s insightful comments into the

harmful nature of the GO TO statement. Dijkstra and others subsequently created a set of acceptable structures

in programming that would enable development without GO TO statements. These structures produced

programs that were easier to read by humans, easier to debug and easier to test. These structures have become

some of the founding principles of modern programming methods.

Although the principles of structured programming have had a profound effect on the programming world, it

was not until the 1970s that an actual language was created for teaching structured programming. Pascal was

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 7

developed especially for this purpose, though it is much derided as a toy language, and appears to have never

been used in commercial development. It appears that existing languages such as COBOL and FORTRAN

were changed to accommodate Dijkstra‟s structures, or that programming included these structures through

more indirect methods.

Later generation languages such as C are fully-fledged structured programming languages; these are from the

third generation and procedural, in that they are both written and executed step-by-step. C, in its turn, has

formed the foundation for the object-oriented language C++.

The three structures allowed in structured programming are sequence, selection, and iteration. Structures are

also thought of in terms of substitution and combination, i.e. structures can be substituted or combined with

other structures as long as the result equals a sequential structure. Structured programming also pays attention

to design and testing with emphasis on a top-down approach. The top-down approach uses modularity as a

means to ensure that the program is both legible and manageable, and also that these modules can be tested as

they are developed. This is beneficial as it ensures that all modules should be tested and that bugs can be

found in the modules that have most recently been added or altered.

Structured programming also places emphasis on program documentation, which can be in the form of a chart

or the structured coding/listing. This documentation allows for subsequent updating of modules, making these

modules easier to locate in the program. Modularity also ensures greater opportunity for re-use of modules

during development.

1.7. Programming Aims

Good programming principles and practice aim at producing a program with the following characteristics;

• Reliability: the program can be depended upon always to do what it is supposed to do

• Maintainability: the program will be easy to change or modify when the need arises

• Portability: the program will be transferable to a different computer with a minimum modification.

• Readability: the program will be easy for a programmer to read and understand.

• Performance: the program causes the tasks to be done quickly and efficiently.

• Storage saving: the program is not allowed to be unnecessarily long

1.8. Programming Paradigms

A programming paradigm is a pattern of problem solving thought that underlies a particular genre of programs

and languages. Four distinct and fundamental programming paradigms have evolved over the last three

decades;

• Imperative programming;

• Object-oriented programming

• Functional programming

• Logic Programming;

1.8.1. Imperative programming;

The oldest and the most well-developed, it emerged with the first computers in the 1940s and its elements

directly mirror the architectural characteristics of modern computers as well. The program and its variables

are stored together and the program contains a series of commands that perform calculations, assign values to

variables, retrieve input, produce out, or redirect control elsewhere in the series.

Procedural abstraction is an essential building block for imperative programming as are assignments, loops,

sequences, conditional statements and exception handling. Imperative languages also support variable

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 8

declaration and expressions. The predominant imperative programming languages include Cobol, Fortran, C

Ada and Perl.

Commands are normally executed in the order they appear in the memory, while conditional and

unconditional branching statements can interrupt this normal flow of execution. Originally the commands

included assignment statements, conditional statements and branching statements. The assignments statements

provided the ability to dynamically update the value stored in the memory location, while conditional and

branching statements could be combined to allow a set of statements to be either skipped or repeatedly

executed. The main features of Imperative programming includes;

• Control structures;

• Input/output

• Error and exception handling

• Procedural abstraction

• Expressions and assignments

• Library support for data structures

1.8.2. Object-oriented (OO) programming:

Provides a model in which the program is a collection of objects that interact with each other by passing

messages that transform their state. The message passing allows the data objects to become active rather than

passive. Object classification, inheritance and message passing are fundamental building blocks for OO

programming. Major languages includes, C++, Java and C#.

1.8.3 Functional Programming:

Emerged in the early 1960s and its creation was motivated by the needs of researchers in artificial intelligence

and its sub-fields- symbolic computation, theorem proving, rule-based systems and natural language

processing. Models a computational problem as a collection of mathematical functions, each with an input

(domain) and a result (range) spaces.

1.8.4. Logic Programming

Logic (declarative) programming allows a program to model a problem by declaring what outcome the

program should accomplish, rather than how it should be accomplished. Sometimes called rule-based

languages, since the program‟s declarations look more like a set of rules, or constraints on the problem, rather

than a sequence of commands to be carried out.

Chapter Review Questions

1. Describe the processing of solving a problem using computers

2. Define a problem Algorithm

3. What are the advantages and disadvantages of using flow-charts to represent problem algorithm

4. What are the advantages and disadvantages of representing a problem algorithm using pseudo-codes.

5. A School is interested in computerizing their students grading system which is as follows;

Marks Grade

80 - 100 A

60 - 79 B

50 - 59 C

40 - 49 D

0 - 39 E

a) Draw a flow chart to represent the solution.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 9

b) Represent the solution in pseudo-code.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 10

CHAPTER TWO

Programming Languages

2.1. What is a Programming Language

There are many definitions of what constitutes a programming language, and none of these is the „correct‟

answer. What might have defined a programming language in the 19th century would not necessarily be

detailed enough for a modern definition. Programming languages are needed to allow human beings and

computers to talk to each other. Computers, as yet, are unable to understand our everyday language or, in fact,

the way we talk about the world. Computers understand logic expressed mathematically through what is

known as machine code. Computer language consists of 1s and 0s or the binary system, which the majority of

human beings would find very difficult to communicate in. Computer languages enable humans to write in a

form that is more compatible with a human system of communication. This is then translated into a form that

the computer can understand. Here are some different ideas on what constitutes a programming language.

 A programming language has been defined as a tool to help the programmer.

 A way of writing that can be read by both a human being and a machine.

 A sequence of instructions for the machine to carry out.

 A way for a human being to communicate with a machine that is unable to understand natural language.

 A computer language offers a means of writing algorithms that can be understood by both human being

and machine. Machines are unable to understand natural language, so a human being uses algorithms that

are translated into machine code by the programming language. Machine code is difficult for humans to

use, so a language „translates‟ human readable language into machine readable form.

 A computer program offers humans a standard way of expressing algorithms to solve particular

problems. As languages offer a convention it allows other humans to read the program, and change it if

they need to.

2.2. Types of Programming Languages

There are three levels of programming languages;

 Machine language (low level language)

 Assembly (or symbolic) language

 Procedure-oriented language (high level language)

Chapter Objectives

By the end of this chapter the learner should be able to

 Define a programming language

 Describe the types of programming languages

 Differentiate and explain advantages and disadvantages of the various types of

programming languages

 Describe the High level languages translation processes

 Describe the criteria for Programming language evaluation

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 11

2.2.1. Machine language

The lowest-level programming language (except for computers that utilize programmable microcode)

Machine languages are the only languages understood by computers. While easily understood by computers,

machine languages are almost impossible for humans to use because they consist entirely of numbers. It is a

programming language in which the instructions are in a form that allows the computer to perform them

immediately, without any further translation being required. Instructions are in the form of a Binary code also

called machine code and are called machine instructions. Commonly referred to as the First Generation

language

2.2.2. Assembly Language

Introduced in 1950s, reduced programming complexity and provided some standardization to build and

applications. Also referred to second generation language. The 1 and 0 in machine language are replaced by

with abbreviations or mnemonic code. It consists of a series of instructions and mnemonics that correspond to

a stream of executable instructions. It is converted into machine code with the help of an assembler. Common

features includes;

 Mnemonic code; used in place of the operation code part of the instruction eg SUB for substract, which

are fairly easy to remember

 Symbolic Addresses which are used in place of actual machine addresses. A programmer can choose a

symbol and use it consistently to refer to one particular item of data. Example FNO to represent First No.

 The symbolically written program has to be translated into machine language before being used

operationally. A 1 to 1 translation to machine language, ie one symbolic instruction produces one machine

instruction/code.

Advantages of Assembly language over machine language

 It is easy to locate and identify syntax errors, thus it is easy to debug it.

 It is easier to develop a computer application using assembly language in comparison with machine

language

 Assembly language operates very efficiently.

2.2.3. High level language

A Machine independent and a Problem oriented (POL) programming language. High level language is

portable across different machine types (architectures); The machine independence of the high level languages

means that in principle it should be possible to make the same high-level language run on different machines.

It reflects the type of problem solved rather than the features of the machine.

High level languages are more abstract, easier to use and more portable across platforms as compared to low-

level programming languages. A programmer uses variables, arrays or Boolean expressions to develop the

logic to solve a problem. Source programs are written in statements akin to English. A high level language

code is executed by translating it into the corresponding machine language code with the help of a compiler or

interpreter. High level languages can be classified into the following categories;

 Procedure-oriented languages (third generation)

 Problem-oriented languages (fourth generation)

 Natural languages (fifth generation).

Procedure languages.

High-level languages designed to solve general-purpose problems, example BASIC, COBOL, FORTRAN, C,

C++ and JAVA. They are designed to express the logic and procedure of a problem. Though the syntax of the

languages may be different, they use English-like commands that are easy to follow. They are portable.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

http://www.webopedia.com/TERM/P/programming_language.html
http://www.webopedia.com/TERM/M/microcode.html
http://www.webopedia.com/TERM/L/language.html
http://www.webopedia.com/TERM/C/computer.html

Programming Methodology Notes Page 12

Problem-oriented languages

Problem-oriented languages also known as Fourth Generation Languages (4GL) are used to solve specific

problems and includes query languages, report generators and Application generators which have simple

English like syntax rules. The 4GLs have reduced programming efforts and overall cost of software

development. They use either visual environment or a text environment for program development similar to

that of third-generation languages. A single statement of the 4GL can perform the same task as multiple line

of a third-generation language. It allows a program to just drag and drop from the toolbar, to create various

items like buttons, text boxes, label etc. A program can quickly create a prototype of the software applications

Natural Languages

Natural languages widely known as fifth generation languages, are designed to make a computer to behave

like an expert and solve problems. The programmer just needs to specify the problem and the constraints for

problem solving. Natural languages such as LISP and PROLOG are mainly used to develop artificial

intelligence and expert systems.

Features of high level language

 Extensive vocabulary of words, symbols and sentences

 Whole sentences are translated into many machine codes instructions

 Portable across different machine types (architectures)

 Libraries of macros and sub-routines can be incorporated

 As they are problem oriented, the programmer is able to work at least to some extent independently of the

machine.

 Have a set of rules that must be obeyed.

 Syntax: the structure of the statements and the grammatical rules governing them. Grammatical rules

that govern the way in which words, symbols, expressions and statements may be formed and

combined.

 Semantics: the meaning of the statements written in the language. The rules that governs its meaning.

– what happens when the program is executed/run most are standardized by ISO/ANSI to provide an

official description of the language

2.3. High Level language Translation

High level languages need to be translated into machine language which is the computer language. The

translation is done by a Compiler or Interpreter

2.3.1. Compiler

A compiler is a manufacturer specifically written computer program which translates (or compiles) a source

code computer program that translates the source code written in a high level language into the corresponding

object code of the low level language. The translation process is called compilation. The entire high level

source code / program is converted into the executable machine code file prior to the object program being

loaded into main memory and executed. Translation done only ones and the object program can be loaded into

the main storage and executed. A program that translates a low-level language into a high level language is

called a Decompiler. Compiled languages includes C, C++, COBOL, FORTRAN etc.

Compilers are classified into single-Pass compilers and Multi-pass compilers. Single-pass compilers are

generally faster than multi-pas compilers, but multi-pass compilers are required to generate high quality code

A Compiler:

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 13

 Translates the source program code into machine code

 Includes linkages for closed sub-routine

 Allocates areas of main storage

 Produces the object program.

 Produces a printed copy (listing) of the source code and object code

 Produces a list of errors found during compilation.

2.3.2. Interpreter:

The interpreter is a translation program that converts each high-level language statement into the

corresponding machine code. The translation process is carried out just before the program statement is

executed. Instead of the entire program, one program statement at a time is translated and executed

immediately. When using an interpreter, the source code translated every time the program is executed

The commonly interpreted languages include BASIC and PERL. Though interpreters are easier to create as

compared to compilers, the compiled languages can be executed more efficiently and are faster. Interpreters

are appropriate in;

 Handling user commands in an interactive system

 Debugging programs as they run (removing program faults).

 Handling software produced for or by a different computer.

2.4. Computer Program Compilation Process

A computer program compilation process involves the following five stages;

1. Lexical analysis: the source program is transformed into tokens. During the transformation all whitespaces

and comments are discarded. All character sequences that do not form valid tokens are discarded and an

error message is generated.

2. Syntactical analysis: analysis to ensure the program syntax is appropriate to the language. Failure results

in an error message been generated.

3. Type / Semantic checking: responsible for ensuring that the compile-time semantic rules of the language

are enforced. An error message is generated if the semantic rules are violated

4. Code optimization: improves the intermediate code based on the target machine architecture

5. Code generation: target machine code is generated.

The first three stages are concerned with finding and reporting errors to the programmer, while the last two are

concerned with generating efficient machine code to run on the targeted computer.

Source Machine

Code Code

2.5. Evaluating Languages

Programming languages can be evaluated from a number of viewpoints, depending on either the programmer,

the environment in which the programmer works or the standards of the organisation. When developing

software, a programmer should consider which language is most suitable to the task, rather than relying on a

language with which they are familiar. You wouldn‟t want to use a spreadsheet to develop a database. All the

features of the language need to be considered rather than just one particular feature. A wrong choice can

mean that the software has to be re-written, which can be very frustrating and time consuming.

Lexical

Analysis

Syntaticical

Analysis
Type /

Semantic

Analysis

Code

Optimization
Code

Generation

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 14

There are a number of different ways that the programmer can think about the design of the system, from the

top-down of structured programming to object oriented design issues. Some languages are geared towards one

particular style of design, whilst others incorporate many types. Each of these language paradigms enables the

programmer to consider the problem from a different viewpoint. There are a few basic questions that can be

asked to help when making these decisions:

1. How readable is the language, to humans? If parts of the program are going to be read or altered

separately from the entire program is might be worth considering how legible they are going to be. It is

also useful to consider the length of names allowed in the language, for instance an early form of Fortran

allowed for only 6 characters. This can lead to clumsy abbreviations that are difficult to read. Statements

such as GO TO, FOR, WHILE and LOOP have increased the readability of programs, and lead to neater

programs. These statements also affect the syntax or grammar.

2. When it comes to writing the program, how easy is it to write the program in this particular language? A

programming language that is easy to write in can make the process easier and faster. It may help to

reduce mistakes. FOR loops and other types of statement allow the programmer to write much simpler

code. This will save time and money, and also make the program smaller.

3. How reliable is the language? Not all languages create robust programs, and some help the programmer

to avoid making errors. A program that is not robust can cause errors, and code can „decay‟. Any

language that helps the programmer to avoid mistakes will make it easier to use.

4. How much would it cost to develop using a given language? Is the language expensive to use and to

maintain? Programs may need to be updated or redeveloped, and an expensive language may make this

prohibitive.

5. How complicated is the syntax going to be? Syntax is an important consideration. Clarity and ease of

understanding are important, as is a syntax that seems logical and sensible. Errors are very likely to occur

where one area of syntax too closely resembles another, and the program may prove difficult to debug.

Some theorists reason that if it is difficult to write a program to parse the language, then it follows that it

will be problematical for the programmer to get it right.

6. Does the language have standards? Languages that have standards for writing programs have greater

readability; for instance Java has standards for naming, commenting and capitalization.

2.6. The Programming Language Generations

The language generations span many decades, and begin with the development of machine code. Each

generation adds new features and capabilities for the programmer to use. Languages are designed to create

programs of a particular type, or to deal with particular problems. Modern languages have led to the

development of completely different styles of programming involving the use of more human-like or natural

language and re-usable pieces of code.

 The first generation of languages was machine language. Instructions and addresses were numerical. These

programs were linked to the machine they were developed on.

 The second generation allowed symbolic instructions and addresses. The program was translated by an

assembler. Languages of this generation include IBM, BAL, and VAX Macro. These languages were still

dependent on the machine they were developed on.

 Third generation languages allowed the programmer to concentrate on the problem rather than the machine

they were writing for. Other innovations included structured programming and database management

systems. 3GL languages include FORTRAN, COBOL, Pascal, Ada, C, and BASIC. All 3GL languages are

much easier for the human being to understand.

 4GL languages (fourth generation). These are known as non-procedural, they concentrate on what you

want to do rather than how you are going to do it. 4GL languages include SQL, Postscript, and relational

database orientated languages.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 15

 5GL (fifth generation). These languages did not appear until the 1990s, and have primarily been concerned

with Artificial Intelligence and Fuzzy Logic. The programs that have been developed in these languages

have explored Natural Language (making the computer seem to communicate like a human being).

Chapter Review Questions

1. Describe the C program compilation process

2. What criteria should a programmer use to evaluate a programming language

3. What are advantages of High-level languages over the Assembly language.

4. Describe the categories of the high-level languages

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 16

CHAPTER THREE

 Introduction to C Programming

3.1. What is C program

C is an imperative (procedural) systems implementation language. C is called a high level, compiler language.

The aim of any high level computer language is to provide an easy and natural way of giving a programme of

instructions to a computer (a computer program). The language of the raw computer is a stream of numbers

called machine code. As you might expect, the action which results from a single machine code instruction is

very primitive and many thousands of them are required to make a program which does anything substantial.

C is one of a large number of high level languages which can be used for general purpose programming, that

is, anything from writing small programs for personal amusement to writing complex applications. C is a

general-purpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at

Bell telephone Laboratories. It is unusual in several ways. Before C, high level languages were criticized by

machine code programmers because they shielded the user from the working details of the computer, with

their black box approach, to such an extent that the languages become inflexible: in other words, they did not

allow programmers to use all the facilities which the machine has to offer. C, on the other hand, was designed

to give access to any level of the machine down to raw machine code and because of this it is perhaps the

most flexible of all high level languages.

The C language has been equipped with features that allow programs to be organized in an easy and logical

way. This is vitally important for writing lengthy programs because complex problems are only manageable

with a clear organization and program structure. C allows meaningful variable names and meaningful function

names to be used in programs without any loss of efficiency and it gives a complete freedom of style; it has a

set of very flexible loop constructions (for, while, do) and neat ways of making decisions. These provide an

excellent basis for controlling the flow of programs.

Another unusual feature of C is the way it can express ideas concisely. The richness of a language shapes

what it can talk about. C gives us the apparatus to build neat and compact programs. This sounds, first of all,

either like a great bonus or something a bit suspect. Its conciseness can be a mixed blessing: the aim is to try

to seek a balance between the often conflicting interests of readability of programs and their conciseness.

Because this side of programming is so often presumed to be understood, we shall try to develop a style which

finds the right balance.

Chapter Objectives

By the end of this chapter the learner should be able to;

 Describe the characteristics of C programming language.

 Describe the process of developing and Executing a C program

 Describe the compilation process of a C program and C program file naming

conventions.

 Differentiate between Syntax and Logical Errors

 Describe the structure / format of a C Program

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/System_programming

Programming Methodology Notes Page 17

C allows things which are disallowed in other languages: this is no defect, but a very powerful freedom which,

when used with caution, opens up possibilities enormously. It does mean however that there are aspects of C

which can run away with themselves unless some care is taken. The programmer carries an extra

responsibility to write a careful and thoughtful program. The reward for this care is that fast, efficient

programs can be produced.

C tries to make the best of a computer by linking as closely as possible to the local environment. It is no

longer necessary to have to put up with hopelessly inadequate input/output facilities anymore (a legacy of the

timesharing/mainframe computer era): one can use everything that a computer has to offer. Above all it is

flexible. Clearly no language can guarantee intrinsically good programs: there is always a responsibility on the

programmer, personally, to ensure that a program is neat, logical and well organized, but it can give a

framework in which it is easy to do so.

The C compiler combines the capabilities of an assembly language with features of a high-level language thus

making it suited for writing both system software and business packages. C program uses a variety of data

types and operators thus making programs written in C to be efficient and fast. C is highly portable and is well

suited for structured programming. C is basically a collection of functions that are supported by the C library

and because new functions can be added to the C library, C has the ability to extend itself.

3.2. Characteristics of C

We briefly list some of C's characteristics that define the language and also have lead to its popularity as a

programming language.

 Small size

 Extensive use of function calls

 Loose typing -- unlike PASCAL

 Structured language

 Low level (BitWise) programming readily available

 Pointer implementation - extensive use of pointers for memory, array, structures and functions.

C has now become a widely used professional language for various reasons.

 It has high-level constructs.

 It can handle low-level activities.

 It produces efficient programs.

 It can be compiled on a variety of computers.

Its main drawback is that it has poor error detection which can make it off putting to the beginner. However

diligence in this matter can pay off handsomely since having learned the rules of C we can break them. Not

many languages allow this. This if done properly and carefully leads to the power of C programming.

3.3. Executing a C program

The steps involved in executing a C program includes;

 Creating the program

 Compiling the program

 Linking the program with functions that are needed from the C library

 Executing the program

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 18

3.4 Compiling a C Program

A C program is first written in the form of a number of text files using a screen editor. This form of the

program is called the source program. It is not possible to execute this file directly. The completed source file

is passed to a compiler a program which generates a new file containing a machine code translation of the

source text. The compiler translates the source code into machine code, and the compiled code is called the

object code. The object code may require an additional stage where it is linked with other object code that

readies the program for execution. The machine code created by the linker is called the executable code or

executable program. Instructions in the program are finally executed when the executable program is executed

(run). During the stages of compilation, linking, and running, error messages may occur that require the

programmer to make corrections to the program source (debugging). The cycle of modifying the source code,

compiling, linking, and running continues until the program is complete and free of errors.

A compiler usually operates in two or more phases (and each phase may have stages within it).

A two-phase compiler works in the following way:

Phase 1 scans a source program, perhaps generating an intermediate code (quadruples or pcode) which helps

to simplify the grammar of the language for subsequent processing. It then converts the intermediate code into

a file of object code (though this is usually not executable yet). A separate object file is built for each separate

source file. In the GNU C compiler, these two stages are run with the command gcc -c; the output is one or

more .o files.

Phase 2 is a Linker. This program appends standard library code to the object file so that the code is complete

and can "stand alone". A C compiler linker suffers the slightly arduous task of linking together all the

functions in the C program. Even at this stage, the compiler can fail, if it finds that it has a reference to a

function which does not exist. With the GNU C compiler this stage is activated by the command gcc -o or ld.

3.5. C Program File naming convention

The compiler uses a special convention for the file names, so that we do not confuse their contents. The name

of a source program (the code which you write) is filename.c. The compiler generates a file of object code

from this called filename.obj. The final program, when linked to libraries is called filename.exe

The endings `dot something' (called file extensions) identify the contents of files for the compiler. The dotted

endings mean that the compiler can generate an executable file with the same name as the original source -

just a different ending. The object file is only working files and should be deleted by the compiler at the end

of compilation. The .c suffix is to tell the compiler that the file contains a C source program and similarly the

other letters indicate non-source files in a convenient way.

Source code: Filename.c

Object code: Filename.obj

Executable code: Filename.exe

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 19

 Myprog.c myprog.obj myprog.exe

 Via compiler via linker

3.6. Errors

Errors are mistakes which we the programmers make. There are different kinds of error:

3.6.1. Syntax Error

Every language has got set of rules. If you make a mistake while using the language, then it is called syntax

error.

Errors in the syntax, or word structure of a program are caught before you run it, at compilation time by the

compiler program. They are listed all in one go, with the line number, in the text file, at which the error

occurred and a message to say what was wrong. A program with syntax errors will cause a compiler program

to stop trying to generate machine code and will not create an executable. However, a compiler will usually

not stop at the first error it encounters but will attempt to continue checking the syntax of a program right to

the last line before aborting, and it is common to submit a program for compilation only to receive a long and

un-gratifying list of errors from the compiler.

As a rule, look for the first error, fix that, and then recompile. Of course, after you have become experienced,

you will recognize when subsequent error messages are due to independent problems and when they are due

to a cascade. But at the beginning, just look for and fix the first error.

Use of Upper and Lower Case

One of the reasons why the compiler can fail to produce the executable file for a program is you have

mistyped something, even through the careless use of upper and lower case characters. The C language is case

dependent. Unlike languages such as Pascal and some versions of BASIC, the C compiler distinguishes

between small letters and capital letters. This is a potential source of quite trivial errors which can be difficult

to spot. If a letter is typed in the wrong case, the compiler will complain and it will not produce an executable

program.

3.6.2. Logical or Intention Error

Errors in goal or purpose (logical errors) occur when you write a program that works, but does not do what

you intend it to do. You intend to send a letter to all drivers whose licenses will expire soon; instead, you send

a letter to all drivers whose licenses will expire sometime. If the compilation of a program is successful, then

a new file is created. This file will contain machine code which can be executed according to the rules of the

computer's local operating system.

When a programmer wants to make alterations and corrections to a C program, these have to be made in the

source text file itself using an editor; the program, or the salient parts, must then be recompiled.

Written in C Written in

machine

language

Written in

Machine

language

Other code from library

Written in machine language

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 20

3.7. C Libraries

In C, a library is a set of functions contained within a single "archive" file. The core of the C language is small

and simple. Special functionality is provided in the form of libraries of ready-made functions. This is what

makes C so portable. Libraries are files of ready-compiled code which we can merge with a C program at

compilation time. Libraries provide frequently used functionality and, in practice, at least one library must be

included in every program: the so-called C library, of standard functions.

 Each library comes with a number of associated header files which make the functions easier to use. Header

files contains the prototypes of the functions contained within the library that may be used by a program, and

declarations of special data types and macro symbols used with these functions. It is up to every programmer

to make sure that libraries are added at compilation time by typing an optional string to the compiler.

Including Library files in C Program

The most commonly used header file is the standard input/output library which is called stdio.h. This belongs

to a subset of the standard C library which deals with file handling and provides standard facilities for input to

and output from a program. Examples of Libraries header files

 Stdio.h, (printf() function)

 maths.h (for mathematical functions) etc.

 conio.h (for handling screen out puts such as pausing program execution getch() function)

The format for including the header file is #include header.h

3.8. C Program Structure

C program is can be divided into modules and functions.

Modules: A module is a set of functions that perform related operations. A simple program consists of one

file; i.e., one module. More complex programs are built of several modules. Modules have two parts: the

public interface, which gives a user all the information necessary to use the module; and the private section,

which actually does the work.

Functions; the basic building block in a C program is the function. In general, functions are blocks of code

that perform a number of pre-defined commands to accomplish something productive. It must have a name

and it is reusable ie it can be executed from as many different parts in a C Program as required. Information

passed to the function is called arguments and is specified when the function is called. And the function either

returns some value to the point it was called from or returns nothing.

Every C Program will have one or more functions and there is one mandatory function which is called main()

function. This function is prefixed with keyword int which means this function returns an integer value when

it exits. This integer value is returned using return statement.

Structure of a Function

There are two main parts of the function. The function header and the function body.

int sum(int x, int y)

{

 int ans = 0; //holds the answer that will be returned

 ans = x + y; //calculate the sum

 return ans //return the answer

}

Function: a sub-program that may

include one or more statements

designed to perform a specific task

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 21

Function Header

It is the first line of a function, example; int sum(int x, int y). It has three main parts

 The name of the function i.e. sum

 The parameters of the function enclosed in paranthesis

 Return value type i.e. int

Function Body

What ever is written with in { } in the above example is the body of the function.

3.9 C Program format

A C program includes the following sections

1. Documentation Section

2. Linker Section

3. Definition Section

4. Global Declaration Section

5. Main() Function Section

 {

 Declaration section

 Executable Section

 }

6. Sub-program Section

 Function 1

 Function 2

 Function3 etc is User defined functions

1.9.1. Documentation Section

This section consists of a set of comments lines giving the name of the program, the author and other details

which the programmer would like to use later. Comments starts with /* and ends with */ and

enhances readability and understandability. Comment lines are not executable statements ie. executed and are

ignored by the compiler. Comments can be inserted wherever there is a blank a space but cannot be nested

(having a comment within a comment)

 example /* …………………./* ……………..*/ ……………….*/

1.9.2. Link Section

This section provides instructions to the compiler to link functions from the system library. C program have

predefined functions stored in the C library. Library functions are grouped category-wise and stored in

different file known as header files. To be able to access the library files it is necessary to tell the compiler

about the files to be accessed.

Instruction Format: #include<file_name>

Example #include<stdio.h> a standard I/O header file containing standard input and output functions

1.9.3. Definition Section

This section allows the definition of all symbolic constants. Statements begin with # sign and do not end with

a ; because the statements are compiler directive statements

Example #define PRINCIPLE 10000

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 22

Symbolic constants are usually written in upper case to distinguish them from lower case variables. Values

defined here remain constant throughout the program.

1.9.4. Declaration Section

Section used to declare global variables. The section is also used to declare user defined functions.

3.9.5 main() Function Section

The main() function is a special function used by C system to tell the computer where the program starts.

Every program must have exactly one main function. The main function is the point by where all C programs

start their execution, independently of its location within the source code. It does not matter whether there are

other functions with other names defined before or after it - the instructions contained within this function's

definition will always be the first ones to be executed in any C program. For that same reason, it is essential

that all C programs have a main function. The main function section has the following sections

 Declaration part: where all variables used in the executable section are declared.

 Executable part: consist of the statements to be executed.

{

 Declaration part

 Executable part

}

There must be a least one statement in the executable part. The two part must be included between the

opening { and the closing }. Program execution begins at the opening { and closes at the closing }, which

signifies the logical end of the program. All the statements between the { and } forms the function body and

are the instructions to perform the given task. All statements in the Declaration and Executable parts must end

with a semicolon (;)

Formats of main()

 main()

 int main()

 void main()

 main(void)

 int main(void)

() or word void means the function has no arguments or parameter and thus does not return any information

to the operating system. int means the function return an integer value to the operating system

3.9.6 Sub-program section

Contains all user defined functions that are called in the main function

main() /* Main program */

{

do_nothing(); /* Function call */

}

/**/

do_nothing() /* Function called */

{

}

Example

// Program using function -- comment

#include <stdio.h>

#include<conio.h>

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 23

int mul (int a, int b);

int main() /* function body*/

{

 int a, b, c;

 a = 5;

 b = 10;

 c = mul (a,b); /* function call*/

 printf("Multiplication of %d and %d is %d", a,b,c); /* request to print the answer on the Screen*/

 getch(); /*command used to pause the results on the screen*/

}

 /* mul() /* ……….. Sub-program mul */

 int mul(int x,int y)

 {

 int p;

 p = x*y;

 return (p);

 }

NB. the values of a & b are passed to x & y respectively when the sub-program is called.

Note the followings

 C is a case sensitive programming language. It means in C printf and Printf will have different meanings.

 C has a free-form line structure. End of each C statement must be marked with a semicolon.

 Multiple statements can be done on the same line.

 White Spaces (ie tab space and space bar) are ignored.

 Statements can continue over multiple lines.

 Printf is a predefined C function for printing out put

 Everything between the starting and ending quotation marks “ ” to be printed.

 To print on separate line; Use the command \n

 int = integer data type

 float = floating point number data type

 %d = formatting command that prints the output as a decimal integer

 %5.2f” = formatting command that prints the output as a floating point integer with five places in all and

two places to the right of the decimal point.

Program Example 3.1 Program Example 3.2

main()

{

printf (“This is my \n”);

printf(“computer book”);

getch();

}

OR

main(()

{

print(“This is \n my computer book”);

getch();

/* program for addition */

#include<stdio.h>

#include<conio.h>

main()

{ int number;

 float amount;

 number = 100;

 amount = 30.75 + 75.35;

 printf("%d\n", number);

 printf("%5.2f", amount);

 getch(); /* pause the results on the screen */

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 24

} }

Program Example 3.3 Program Example 3.4

/* program to print Hello */

#include <stdio.h>

#include<conio.h>

int main()

{

 printf("hello, world\n");

 getch();

}

/* program to calculate the Interest rate */

#include <stdio.h>

#include<conio.h>

#define PERIOD 10

#define PRINCIPAL 5000.00

int main()

 {

 int year;

 float amount, value, inrate;

 amount = PRINCIPAL;

 inrate = 0.11;

 year = 0;

 while(year <= PERIOD)

 {printf("%2d %8.2f\n", year, amount);

 value = amount + inrate * amount;

 year = year + 1;

 amount = value;

 }

 getch();

 }

3.10. Breaking out early

Return statement

The program can simply call return(value) anywhere in the function and control will jump out of any number

of loops or whatever and pass the value back to the calling statement without having to finish the function up

to the closing brace }.

The exit() function

The function called exit() can be used to terminate a program at any point, no matter how many levels of

function calls have been made. This is called with a return code, like this:

#define CODE 0

exit (CODE);

This function also calls a number of other functions which perform tidy-up duties such as closing open files

etc.

Chapter Review Questions

1. How is a library file incorporated into a C program? Name the most common library file in C.

2. What is another name for a library file?

3. Describe the structure of C Program

4. Distinguish between

a) main() and main(void)

b) int main() and void main()

5. Find errors if any in the following

#include <stdio.h>

Void main()

{ Print (“Hello C);

}

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 25

CHAPTER FOUR

 C Programming: - Constants, Variables and Data Types

4.1. C Program Character set

A computer program consists of instructions formed using certain symbols and words according to a rigid

rules called syntax rules (Grammar) of the programming language used. Each program instruction must

confirm precisely to the syntax rules of the language. Like all programming languages, C has its own set of

vocabulary and grammar

The characters that can be used to form words, numbers and expressions depend upon the computer on which

the program is run. The characters in C are grouped into the following categories;

1. Letters : Upper case A ……. Z and Lower casa a ……..z.

2. Digits: 0……..9

3. Special characters

, comma

. period

; semicolon

; colon

? Question mark

„ apostrophe

“ quotation mark

! exclamation mark

| vertical line

/ slash

\ back slash

~ tilde

_ under score

$ dollar sign

% percent sign

& ampersand

^ caret

* asterisk

- minus sign

+ plus sign

< opening angle bracket (less than

sign

> angle bracket or greater than sign

(left parenthesis

) right parenthesis

] right bracket

[left bracket

{ left brace

} right brace

number sign

C compiler ignores white spaces (Blank, Horizontal tab, Carriage return, New line Form feed) unless they are

a part of a string constant. White spaces may be used to separate words but are prohibited between the

characters of keywords and identifiers.

Trigraph characters

Chapter Objectives

By the end of the chapter the learner should be able to;

 Describe the C program character set and Trigraph characters

 Describe the C Program Tokens;

Constants, Keywords, Strings, Identifiers Special symbols and Operators

 Declare and assign values to C variables.

 Differentiate between Constants and Symbolic Constants

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 26

C has the concept of “trigraph” sequences to provide a way to enter certain characters that are not available on

some keyboards. Each trigraph sequence consists of three characters (two question marks followed by another

character

??= #number sign

??([left bracket

??)] right bracket

??< { left brace

???> } right brace

??! | vertical line

??/ \ back slash

??/ ^ caret

??- ~ tilde

4.2. C Program Tokens

In a passage text, individual words and punctuations marks are called tokens. Similarly in a C program the

smallest individual units are known as C Tokens. C program has six types of tokens shown in figure 4.1 below

and C is written using this tokens and the syntax of the language.

Figure 4.1 C Tokens

4.3. Reserved words / Key words and Identifiers

Reserved words (occasionally called keywords) are one type of grammatical construct in programming

languages. These words have special meaning within the language and are predefined in the language‟s formal

specifications.

Every C programs word is classified as either a keyword or identifier. All keywords have the fixed meaning

and these meaning cannot be changed and acts as the building blocks for program statements. List of ANSI C

keywords are listed in table 3.2 below.

auto

break

case

char

const

continue

default

do

double

else

enum

extern

float

for

goto

if

int

long

register

return

short

signed

sizeof

static

struct

switch

typedef

union

unsigned

void

volatile

while

Table 4.1. ANSI C Keywords

Identifiers refer to the names of variables, functions ad arrays. These are user defined names and consists of a

sequence of letters and digits, with a letter as a first character.

C Tokens

Operators Key Words Constants Strings

Identifiers Special Symbols

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

http://en.wikipedia.org/wiki/Keyword_(computer_programming)
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language

Programming Methodology Notes Page 27

4.4 Constants

Constants in C Program refers to fixed values that do not change during the execution of the program. Figure

4.2 below shows the types of constants supported by C program

Figure 4.2 C program Constants

4.4.1. Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers namely;-

1. Decimal integer: Digits 0 – 9 example +78, -321 Embedded spaces commas and non digit characters are

not permitted between digits

2. Octal integer: consists of any combination of digits from the set 0 trough 7, with a leading 0. Example

037, 0, 0435, 0551

3. Hexadecimal integer: a sequence of digits preceded by 0x or 0X, they may also include alphabets A

through F or through f. A through F represents number 10 to 15. Examples 0X2, 0x9F, 0Xbcd

4.4.2. Real Constants

Real Constants are used to represent quantities that vary continuously, such as distance, height, temperatures,

prices etc. which integer constants are inadequate to represent. These quantities are represented by numbers

containing fractional parts example 12.58. Such numbers are called real (floating point) constants. A real

number may also be expressed in exponential (or scientific) notation example the value 215.66 may be written

as 2.1566e2 in exponential notation. e2 means multiply by 10
2

4.4.3. Single Character Constants

A single character constant contains a single character enclosed within a pair of single quote marks. Example

„5‟, „x‟, „ „ etc. The character constants have integer values known as ASCII values. To find out the ASCII

value for any character eg “a” use the following program

include<stdio.h>

include<conio.h>

main()

{

printf(“%d”, „a‟);

getch();

}

Constant

Numeric

Character String

Real

Constant

Single character

constants

String

constants

Integer

Constant

Rules for Identifiers

1. First letter must be an alphabet (or underscore).

2. Must consist of only letters, digits or underscore

3. Only first 31 characters are significant

4. Cannot be a Keyword.

5. Must not contain white spaces

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 28

The program will output 97as the output. Since each character constant represents an integer value, it is

possible to perform arithmetic operations on character constants.

4.4.4. String Constants

A string constant is a sequence of characters enclosed in double quotes. They may be letters, numbers, special

characters and blank spaces. Example “hello‟, “1987”, “5+5” etc. Note „X‟ is not the same as “X”. A string

constant does not have a ASCII value.

4.4.5. Backslash Character constants

C supports some special backslash constants are used in output functions Example „\n‟ stands for new line.

Though having two characters they represent one character, these combinations are known as escape

sequences. Table 4.2 below gives a list of the C backslash constants

„\a‟ audible alert (bell)

„\b‟ back space

„\f‟ form feed

„\n‟ new line

„\t‟ carriage return

„\v‟ vertical tab

„\” single quote

„\”‟ double quote

„\?‟ question mark

„\\‟ backslash

„\0‟ null

Table 4.2. C program backslash constants

4.5 Variables

A variable is a data name that may be used to store a data value. Unlike constants that remain unchanged

during the execution of a program, a variable may take different values at different times during execution. A

variable name should be chosen in a meaningful way so as to reflect its function or nature in the program.

Example price, rate, total, amount etc. Naming follows the same rules as stated in the identifiers section. Valid

variable names include;

 John, Value distance, Sum1 etc

Invalid variable names includes;

 123, (area) % etc

4.6. Data types

C program is rich in its data types. Storage representations and machine instructions to handle constants differ

from machine to machine. ANSI C supports three classes of data types;

1. Primary (or fundamental) data type

2. Derived data types

3. User-defined data types

The derived data type and the user-defined data types will be discussed in later chapters

4.6.1. Primary data types

All C compilers support five (5) fundamental data types namely Integer (int), Character (Char), Floating point

(float), Double-precision floating point (double) and Void. Figure 4.4. below show C program primary data

types. The size and range for the primary data types in a 16-bit machine are shown in table 4.5

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 29

Figure 4.4. Primary data types in C

Table 4.5. Size and Range of basic data types on a 16-bit machine

4.6.2. Integer data types

Integers are whole numbers with a range of values supported by a particular machine. Integer data types are

defined in C as int. C supports three classes of integer storage, short int, int and long int in both signed and

unsigned forms.

4.6.3. Floating point types

Floating point (or real) numbers are stored in 32 bits (in all 16-bit and 32-bit machines) with 6 digits of

precision. Floating point data type is defined in C as float. When the accuracy provided by float is not

sufficient, the type double can be used to define the number.

4.6.4. Void types

Void data type has no values, and usually used to specify the void type of function which does not return any

value to the calling function example main(void)

4.6.5. Character type

A single character can be defined as character (char) type of data. Characters are usually stored in 8-bit (one

byte) of internal storage.

4.7. Declaring variables

Variable to be used in a C program need to be declared to the C compiler. Declaration of variables does the

following two things; it tells the compiler what the variable name is and it specifies what type of data the

variable will hold. A variable must be declared before it is used in a C program. A variable can be used to

store a value of any data type. Syntax for declaring a variable

data_type v1, v2, vn;

 v1, v2 and vn are names for variables and the variables are separated with commas. A declaration statement

must end with a semi-colon.

examples

int count;

Data type Range of values

char -128 to 127

int -32,768 to 32,768

float 3.4e-38 to 3.4e +38

double 1.7e-308 to 1.7e+308

 Integer Character

 Floating Point

Signed unsigned type

int unsigned int

short int unsigned short int

long int unsigned long int

Char

signed char

unsigned char

Float double long double
void

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 30

int count, price

double ratio;

Declaration of variables is done immediately after the opening brace ({) in the main() function body.

Variables can also be declared outside the main() function either before or after. When declared before the

main() function they are called Global variables and can be used in all the functions in the program. Global

variables do not need to be declared again in other functions and are called external variables. Variables

declared within a function are called local variables as they are only visible and meaningful inside the

function they are declared. Example of local variable declaration;

main()

{

int code;

float x, y;

char c;

statements;

}

4.7.1. User defined Type Declaration

C supports type definition that allows a programmer to define an identifier that would represent an existing

data type. These data types can later be used to declare variable. Format;

typedef type identifier;

where type refers to existing data type and identifier refers to the new name given to the data type. The

existing data type may belong to any class of type, including the user-defined ones. This method only changes

the name of the identifier and not the data type. Eexamples

typedef int units;

typedef float marks;

Once defined the new identifiers names can be to declare variable example

units code;

marks x, y;

4.8. Declaration of Storage Class

Variables in C have not only the data type but also storage class that provides information about their location

and visibility. The storage class decides the portion of the program within which the variables are recognized.

C provides a variety of storage class specifiers that can be used to declare explicitly the scope and lifetime of a

variable. This concept is important only in multifunction and multiple file programs.

4.9. Assigning Values to Variables

Variables are created for use in the program statements. Values can be assigned to variables using the operator

„=‟ in a C program or through reading the values from the keyboard using the scanf() function.

4.9.1. Using the „=‟ operator

The format is as follows; variable_name = value; OR variable_name = constant;

The assignment statement implies that the value of the variable on the left of the „equal sign‟ is set equal to the

value of the quantity on the right. Example

gross_salary = basic_salary + commission;

Variables can be assigned an initial value when declaring it in a process called initialization, using the format;

data type variable_name = constant

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 31

4.9.2. Reading data from the keyboard (scanf())

Another way of assign value to variables is to input data through the keyboard using the scanf function. The

general format for scanf() is as follows

scanf(“control string”, &variable1, variable2, …..);

The control string contains the format of data being received, the ampersand & before the variable name is an

operator that specifies the variable name‟s address. Example

scanf(“%d”, &marks);

When the computer encounters this statement, the programs stops and waits for the value marks to be keyed

in through the keyboard and the <enter key> pressed. “%d” signifies that an integer data type is expected.

The use of scanf() provides an interactive feature and makes the program more user friendly.

Program Example 4.1. Program to show use of Scan for interactive programming

#include<stdio.h>

#include<conio.h>

main()

{

 int number;

 printf(" Enter an integer number\n");

 scanf("%d", &number);

 if (number > 100) /* Statement does not end with a semi-colon */

 printf("Your number is smaller than 100\n\n");

 else

 printf("Your number is less than 100\n\n");

 getch(); /* Pause the out put on the Screen */

 }

Out Put

4.10. Defining Symbolic Constants

When the use of a numeric value in a program is not very clear, especially when the same value means

different things in different places C allows the use of symbolic name to differentiate the different values and

enhance the understandability of the program. The format for defining a symbolic constant is as follows

 #define symbolic_name value of the constant

Example

 #define PASS_MARK 50

 #define MAX 50

Symbolic names are constants and not variables and thus do not appear in the declaration section. The rules

that apply to the #define statement which defines a symbolic constants are;

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 32

 Symbolic names have the same form as variable names. Symbolic names are usually written in CAPITAL

letters to visually distinguish them from the normal variable names.

 No black space between the # and word define is permitted

 „#‟ must be the first character in the line

 A black space is required between #define and symbolic name and between the symbolic name and the

constant.

 #define statement must not end with a semicolon.

 After definition, the symbolic name should not be assigned any other value within the program using an

assignment statement. Example MAX = 200; this is illegal

 Symbolic names are NOT declared for data type. Its data type depends on the type of constant.

 #define statements may appear anywhere in the program but before it is referenced in the program, Usual

practice is to place the #define statements at the beginning of the program.

Program Example 4.2. Program to calculate the Average of 10 number entered through the keyboard

#include<stdio.h>

#include<conio.h>

#define N 10

main()

{

 int count;

 float sum, average, number;

 sum = 0;

 count = 0;

 while(count < N)

 {

 printf("Enter any number ");

 scanf("%f", &number);

 count = count + 1;

 }

average = sum/N;

printf(" N = %d Sum = %f", N, sum);

printf("Average = %f", average);

getch();

 }

Out put

Chapter Review Questions

1. What is a variable and what is meant by the “value” of a variable?.

2. What is variable initialization?.

3. Find error in the following declaration statements

int x;

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 33

float letter, DIGIT;

double p, q;

n, m, z INTEGER;

4. Write a program to read two floating point numbers using scanf statement assign their sum to an integer

variable and then output the values of all the three variables, w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 34

CHAPTER FIVE

C- Programming:- Operators and Expressions

5.1. Overview

C supports a rich set of built-in operators. An operator is a symbol that tells the computer to perform certain

mathematical or logical manipulations on data or variables. Categories of C operators includes; Arithmetic

operators; Relational operators; Logical operators; Assignment operators; Increment and decrement operators;

Conditional Operators; Bitwise operators; Special operators

5.2. Arithmetic Operators

C provides all the basic arithmetic operators listed in table 5.1. below

+ Addition of unary plus

- Subtraction of unary minus

* Multiplication

/ Division

% Modulo division

Table 5.1: Basic arithmetic operators

Integer division truncates any fractional part. The modulo division operation produces the remainder of an

integer division. Example

a-b a+b a*b a/b a%b -a*b

Here a and b are variables and are known as operands.

5.3. Relational Operators and Logical operators

We often compare two quantities and depending on their relation make certain decision. The comparison is

done using relational operator. C supports six relational operators shown in table 5.1;

< Is less than

<=` Is less than or equal to

> Is greater than

>= Is greater than or equal to

== Is equal to

!= Is not equal to

Table 5.1 C relational operators

C supports the following three logical operators

Chapter Objectives

By the ends of this chapter the learner should be able to;

 Describe the C program operators and their classifications

 Use C program operators appropriately and correctly in a C Program

 Describe the C program expressions

 Use C program Expression appropriately in a C program

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 35

1. && meaning logical AND

2. || meaning logical OR

3. ! meaning logical NOT

The logical operators && and || used when testing more than one condition and make a decision.

if mark >= 80 && mark < 90

An expression combining two or more relational expressions is called logical expression or compound

relational expression and yields the value of either 1 or 0 / true or false.

5.3.1. Relative precedence of the Relational Operators

The relative precedence of the relational and logical operators are as follows

Highest !

 > >= < >=

 == !=

 &&

Lowest ||

5.4 Assignment operators

Assignment operators are used to assign the results of an expression to a variable. The usual assignment

operator is “=”. C has a set of „shorthand‟ assignment operators of the form

vop = exp;

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator op= is

known as the shorthand assignment operator. Shorthand operators in C are shown in table 5.2. below

Statement with simple assignment operator Statement with shorthand operator

a = a+1

a = a-1

a = a*(n+1)

a = a/(n+1)

a = a%b

a + = 1

a -+1

a *=n+1

a /= n+1

a %=b

Program Example 5.1: Program to print a sequence of squares of numbers.

/* documentation section*/

#include<string.h>

#include<stdio.h>

#include<conio.h>

#define N 100

#define A 2

main()

{

 int a;

 a=A;

 while (a < N)

 {

 printf("%d\n", a);

 a *= a;

 }

 getch();

 }

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 36

Out Put

2

4

16

5.5. Increment and Decrement Operators

C allows two very useful operators not generally found in other languages called increment and decrement

operators ++ and -- operators

++ adds 1 to the operand

-- Subtracts 1 from the operand

Format ++x or --x

Examples

++m is the same as m = m+1 (or m +=1;)

--m is equivalent to m = m-1 (or m -+1);

Increment and decrement operators and extensively used in the for and while loops

5.6. Conditional Operators

A ternary operator pair “?:” is used in C to construct conditional expressions. The format for using the

conditional operator is;

exp1 ? exp2 : exp3

where exp1, exp2 and exp3 are expressions. If exp1 is evaluated and found to be nonzero(true) then

expression exp2 is evaluated and becomes the value of the expression. If Exp1 is found to be nonzero(false)

the Exp3 is evaluated.

 If exp=true

 then exp2

 else exp3

example

a= 10

b = 15;

x = (a>b)? a:b;

x will be assigned value of b

if (a>b)

 x = a

else

x = b

Rules for ++ and – Operators

 They are urinary operators and requires a variable as their operand

 When postfix ++ (or --) is used with a variable in an expression, the expression is evaluated first using

the original value of the variable and then the variable is incremented (or decremented) by 1

 When prefix ++ (or --) is used with a variable in an expression, the expression is incremented (or

decremented) first and then the expression is evaluated using the new value of the variable.

 The precedence and associatively of ++ and – operators are the same as those of unary + and unary -.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 37

5.7. Special Operators

C supports some special operators namely, comma operator, size-of operator, pointer operator (& and *) and

member selection operators (. &->) . the pointer and member selection will be discussed in later chapters.

5.7.1. Comma Operator

Used to link the related expressions together. A comma linked list of expressions is evaluated left to right and

the value of right-most expression is the value of the combined expression

value = (x =10, y =5, x+y);

first assigns 10 to x then assigns 5 to y and finally assigns 15 (10+5) to value

5.7.2. Sizeof Operators

The sizeof operator is a compile time operator and when used with an operand, it returns the number of bytes

the operand occupies. The operand may be a variable constant or a data type qualifier. Example

m = sizeof(sum);

n = sizeof(long int);

The sizeof operator is normally used to determine the lengths of arrays and structures when their sizes are not

known to the programmer

5.8. Arithmetic Expressions

An arithmetic expression is a combination of variables, constants and operators arranged as per the syntax of

the language. Example

 a x b-c = a*b –c

(m+n)(x+y) = (m+n)*(x+y)

Expressions are evaluated using an assignment statement of the form

 variable = expression;

example

x = a * b – c;

y = b/c * a;

Program example 5.2. Program to illustrate the use of variables in expressions and their evaluation

#include<string.h>

#include<stdio.h>

#include<conio.h>

#define N 100

#define A 2

main()

{

 int a, b, c, d, x, y, z;

 a=9;

b = 12;

c = 3;

x = a-b/3 +c*2 -1;

y = a-b/ (3+c) * (2-1);

z = a- (b /(3+c) * 2) -1);

 printf("x = %f\n", x);

printf("y = %f\n", y);

printf("z = %f\n", z);

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 38

 getch();

 }

Out Put

x = 10.000000

y = 7.000000

z = 4.000000

5.9. Precedence of Arithmetic Operators

An arithmetic expression without parentheses will be evaluated from left to right using the rules of precedence

of operators. There are two distinct priority levels of arithmetic operators in C.

High priority: * / %

Low priority: + -

5.9.1. Operator Precedence and Associativity

Each operator in C has a precedence associated to it. This precedence is used to determine how an expression

involving more than one operator is evaluated. There are distinct levels of precedence and an operator may

belong to any of these levels. Operators on the higher precedence level are evaluated first, operators at the

same level are evaluated either from left-to-right or from right-to-left depending on the level. This is called

associativity of the operator.

C operators in order of precedence (highest to lowest). Their associativity indicates in what order operators of

equal precedence in an expression are applied. Table 5.3. below C operators precedence and associativity

Operator Description Associativity

()

[]

.

->

++ --

Parentheses (function call) (see Note 1)

Brackets (array subscript)

Member selection via object name

Member selection via pointer

Postfix increment/decrement (see Note 2)

left-to-right

++ --

+ -

! ~

(type)

*

&

Prefix increment/decrement

Unary plus/minus

Logical negation/bitwise complement

Cast (change type)

Dereference

Address

right-to-left

Rules for evaluation of Expression

 First parenthesized sub-expression from left to right is evaluated

 If parentheses are nested, the evaluation begins with the innermost sub-expression.

 The precedence rule is applied in determining the order of application of operators in evaluating sub-

expressions.

 The associativity rule is applied when two or more operators of the same precedence level appear in a

sub-expression.

 Arithmetic expressions are evaluated from left to right using the rules of precedence.

 When parentheses are used, the expression within parentheses assume highest priority.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 39

sizeof Determine size in bytes

* / % Multiplication/division/modulus left-to-right

+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right

< <=

> >=

Relational less than/less than or equal to

Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

|| Logical OR left-to-right

?: Ternary conditional right-to-left

=

+= -=

*= /=

%= &=

^= |=

<<= >>=

Assignment

Addition/subtraction assignment

Multiplication/division assignment

Modulus/bitwise AND assignment

Bitwise exclusive/inclusive OR assignment

Bitwise shift left/right assignment

right-to-left

, Comma (separate expressions) left-to-right

Note 1:

Parentheses are also used to group sub-expressions to force a different precedence; such

parenthetical expressions can be nested and are evaluated from inner to outer.

Note 2:

Postfix increment/decrement have high precedence, but the actual increment or decrement of the

operand is delayed (to be accomplished sometime before the statement completes execution). So

in the statement y = x * z++; the current value of z is used to evaluate the expression (i.e., z++

evaluates to z) and z only incremented after all else is done. See postinc.c for another example.

Example

If (x== 10 +15 && y<10)

+ has a higher precedence than the && and the relational operators && and <

Then

 if (x ==15&&y<10)

Next determine if x == to 15 and y<10. If x= 20 and y = 5 then

x==25 is false

y<10 is true

Chapter review questions

1. Which of the following expressions are true

a). !(5+5>=10)

b). 5 + 5 = =10 || 1+3 ==5.

c). 10! = 15&& !(10<20) || 15>20.

2. Identify unnecessary parentheses in the following arithmetic expressions.

a). ((x-(y/5)+z)%8) +25

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

http://www.difranco.net/cop2220/examples/k&r_examples/postinc.c

Programming Methodology Notes Page 40

b). (m*n) + (-x/y)

c). x/(3*y)

4. Find the output of the following program

main()

{

int x = 100;

printf(“%d/n”, 10 + x++);

printf(“%d/n”, 10 + ++x

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 41

CHAPTER SIX

C Programming:- Managing Input and Output Operations

6.1. Introduction

Reading, processing and writing of data are the three essential functions of a computer program.

Most programs take data as input and display the processed data, often known as information or output on a

suitable medium. The methods of providing data to a programs variable are;

 Assignment statements example x = 60;

 Input function scanf () which reads data from a keyboard. (Scanf stands for scan formatted)

Unlike other high-level languages, C does not have any built-in input/output statements as part of the syntax.

All input/output operations are carried out through function calls such as printf and scanf. These standard

input/out put functions are contained in the <stdio.h> library file. To able to call these standard input/output

functions the library/header file <stdio.h must be included into the program through the command;

#include<stdio.h> (stdio.h = standard input-output header file).

6.2. Reading a Character.

The simplest of all input/output operations is reading a character from the ‟standard input‟ unit (Usually

keyboard) and writing it to the „standard output‟ unit (usually the screen). In C program, reading a character

can be done by using the getchar() function. The getchar function takes the following format;

 variable_name = getchar();

variable_name is a valid C name that has been defined as char type. When the statement is reads, the program

waits until a key is pressed and then assign the character as a value to the getchar() function. Example;

char name;

name = getchar();

Example 6.1. Program Example: use of getchar() function to read a character

/* program example on use of getchar function */

#include<stdio.h>

#include<conio>

main()

{

char answer;

printf(„Would you like to know my name?\n);

printf(“Type Y or YES and N or NO:”);

answer = getchar();

Chapter Objectives

By the end of this chapter the learner should be able to;

 Use the C program input and Output functions appropriately

 Link the appropriate header file

 Use the scanf function to format inputs

 Use the printf function to format output

 Be able to detect errors in in puts

 Enhance the readability of the Out put

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 42

if (answer == „Y‟ || answer == „y‟)

printf(“\n\n My name if BUSY BEE\n”);

else

printf(“\n\n You are Good for nothing\n”);

getchar();

}

The getchar function may be called successively to read the characters contained in n a line of text.

6.2.1. Character test functions.

Used to test whether a character is a digit, alphanumeric, lowercase, uppercase, etc. The functions are

contained in the library header <ctype.h>

Function Test

isalnum(c) Is c alphanumeric?

isalpha(c) Is c an alphabetical character?

isdigit(c) Is c a digit?

islower © Is c lower case letter?

isprint(c) Is c printable character?

ispunct(c) Is c a punctuation mark?

Isspace(c) Is c a white space character?

Isupper(c) Is c upper case letter?

Example 6.2. Program to test the character type

#include<stdio.h>

#include<conio.h>

#include>ctype.h>

main()

{

char character;

printf(“Press any key\n”);

character = getchar();i

if (isalpha(character) > 0) /* Test for letter */

 printf(“The character is a letter”);

 else

 if (isdigit(character) > 0)

 printf(“The character is a digit”);

else

 printf(“The character is not alphanumeric‟):

getch();

}

6.3. Writing a character.

Like getchar there is an analogous function putchar for writing characters one at a time to the terminal. It

takes the form;

putchar (variable_name);

the variable name is a type char variable containing a character.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 43

Example 6.3 Program to show use of putchar function and to convert case of a character

#include<stdio.h>

#include<conio.h>

#include>ctype.h>

main()

{

char alphabet;

printf (“Enter any alphabet\n”);

putchar (“\n”); /* move to the next line*/

alphabet = getchar();

if (islower(alphabet))

putchar (toupper (alphabet)); /* Reverse the case and display */

else

putchar(tolower(alphabet));

getch();

}

6.4. Formatted Input

Formatted input refers to an input data that has been arranged in a particular format. C program uses the scanf

function to format in the inputs. The scanf function takes the following format;

 scanf(“control string”, arg1, arg2, ….);

The control string specifies the field format in which the data is to be entered and the arguments arg1, arg2

specify the address of locations where the data is stored. Control string and the arguments are separated by

commas. Control string (also called format string) contains field specifications which direct the interpretation

of input data and includes;

 Field (or format) specification, consisting of the conversion character %, a data type character (or type

specifier), and an optional number, specifying the field width

 Blank, tabs and newlines

Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to be assigned

to the variable associated with the corresponding argument. The field width specifier is optional.

6.4.1. Inputting Integer Numbers

The field specification for reading an integer number is

 % w sd

% - specifies a conversion specification follows. w is an integer number that specified the field width of the

number to be read and d is the data type character and indicates the number to be read is a integer. Consider

the following example;

scanf(“%2d %5d”, &num1, &num2);

If number entered are 50, 31426, 50 will be assigned to num1 and 31426 will be assigned to num2. The

output will be 50, 31425. If number entered are 31426, 50, the num1 variable will be assigned 31 (because of

the %2d) and num2 variable will be assigned the remaining part - 426 (unread part of 31426). The output

will thus be 31 426

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 44

Input data must be separated by spaces, tabs or new lines, punctuation marks do not count as separators. The

input data should not contain more digits than specified by the input format example, %2d requires 2 digits

maximum, while %5d will require maximum of 5 digits.

Program example 6.4. Reading integers using scanf function

#include<stdio.h>

#include<conio.h>

#include>ctype.h>

main()

{

int a, b, c, x, y

printf(“enter three integer numbers\n”);

scanf(“%d %d %d”, &a, &b, &c);

printf(“Enter two 4 digit integer numbers\n”);

scanf(“%2d %4d”, &x, &y);

getch();

}

Output

Enter three integer number

1 2 3

1 3 -3577

Enter two 4 digit integer number

6789 4356

67 89

6.4.2. Inputting Real (floating point numbers)

Unlike the integers the width of the real numbers is not to be specified, scanf reads real numbers using the

simple %f for both the decimal point notation and exponential notations. Example

scanf (%f %f %f”, &x, &y, &z); with the input 475.90 43.25 689.0, 475.90 will be assigned to x, 43.25

will assigned to y and 689.0 will assigned to z.

Program example 6.5. Reading float numbers using scanf function

#include<stdio.h>

#include<conio.h>

#include>ctype.h>

main()

{

float a, b, c, x, y

printf(“Enter Values for A and B\n”);

scanf(“%f %f”, &a, &b);

printf(“x = %f\n y = %f\n\n”, x, y

printf(“Enter values for X and Y \n”);

scanf(“%1f %1f”, &x, &y);

printf(“\n\n x = %.12f\n y = %12e”. x y);

getch();

}

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 45

Output

Enter values or A and B

199.75 12.567

a = 199.95

b = 12.567

Enter values for X and Y

4.123458967 18.56768974363

x = 4.123458967

y = 18.56768974363e001

6.5. Inputting Character Strings

The scanf function format for inputting character strings are;

scanf(%ws) or scanf(%wc);

When we use %wc for reading a string the program waits until the w
th

 character is keyed in.

%s terminates reading at the encounter of a blank space.

6.6. Reading mixed Data types

C allows inputting of strings of mixed data types as long as the data items match the control specifications in

order and type. When an attempt is made to read an item that does not match the type expected, the scanf

function does not read any further and immediately returns the values read. Example;

scanf(“%d %c %f %s”, &count, &code, &ratio, name); will read the data

15 p 1.575 coffee correctly and assign the values to the variables in the order in which they appear.

6.7. Detecting Errors in Input

When a scanf function completes reading its list, it returns the value of number of items that are successfully

read. When scanf() encounters an error example in data type, it returns the number of the last correctly read

value. Example scanf(“%d %f %s”, &a, &b, name); will return 1 when 20, motor, 15.25 data is input.

Program Example 6.6. Program to test correctness of the data input

#include<stdio.h>

#include<conio.h>

#include>ctype.h>

main()

{

 int a

float f;

char c;

printf(“Enter values of a, b, c\n”);

if scanf(“%d %f %c”, &a, &b, &c) ==3)

 printf(“a = %d, b = %f c = %c\n”, a, b, c);

else

printf(“Error in input. \n”);

getch();

}

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 46

Out put

Enter values for a, b, c

12 3.45 A

a = 12, b = 3.450000 c = A

Enter values for a, b, c

23 78 9

a = 23 b = 78.00000 c =9

6.8. Commonly used Scanf formats

%s Read a string

%d Read an integer

%f Read a floating point value

%c Read a single character

%i Read a decimal, hexadecimal or octal integer

Note when using scanf

 All function arguments, except the control string must be pointers to variables

 Format specification contained in the control string should match the arguments in order

 Scanf terminates if it encounters a mismatch.

 Input data items must be separated by spaces and must match the variables receiving the input data in the

same order.

 Any unread data items in a line is considered as part of the data input line in the next scanf call.

 When the field width specifier w is used it should be large enough to contain the input data size.

Rules of scanf()

 Each variable to be read must have a filed specification

 For each field specification, there must be a variable address of proper type

 Any non-whitespace character used in the format string must have a matching character on the user input.

 Never end the format string with whitespaces. It is a fatal error.

 The scanf reads until

o A white space character is found in a numeric specification or

o The maximum number of characters have been read or

o The end of file is reached.

6.9. Formatted Out put

The printf function is used to format the C program out puts. The printf statement provides certain features

that can be effectively exploited to control the alignment and spacing of print-outs on the terminal. The printf

function format is

printf(“ control string”, arg1, arg2,arg3, …..);

The control string consists of;

 Characters that will be printed on the screen as they appear

 Format specification that defines the output format for display of ach item.

 Escape sequence characters such as \n (for new line), \t (for tab) and \b.

The control string indicates how many arguments follow and what their types are. The arguments arg1, arg2,

are the variables whose values are formatted and printed according to the specifications of the control string.

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 47

The argument should match in number, order and type with the format specifications. A simple format

specification has the following form;

Format (%w.p type-specifier)

w = integer number that specifies the total number of columns for the output value, p is another integer

number that specifies the number of digits to the right of the decimal point or the number of characters to be

printed from a string. Both w and p are optional.

Printf function never supplies a newline automatically and therefore multiple printf statements may be used to

build one line of output.

6.9.1. Formating Integer and Real numbers output

The format specification for printing an integer number is;-

% w d

w specifies the minimum field width for the output, however if the number is greater than the specified field

width, it will print in full overriding the minimum specification.

The format specification for printing a real number is;

% w.p f

w specifies the minimum field width for the output, p an integer indicates the number of digits to be displayed

after the decimal point (precision). The value when printed out is rounded to p decimal places and printed

right-justified.

 Examples of integer and real numbers formatting

Format Out put

printf(“%6d”, 9867);

prinff(“%-6d”,9867);

printf(“%o6d”, 9876);

printf(“%7.4f”, 98.7654)

printf(“%7.2f”, 98.7654)

printf(“%-7.2f”, 98.7654)

printf(“%f”, 98.7654)

_ _ 9876

9876__

0098676

98.7654

 98.77

98.77

98.7654

Program Example 6.7. Formatted output for Real numbers

#include<stdio.h>

#include<conio.h>

#include>ctype.h>

main()

{

 float y = 98.7654;

printf(“%7.4f\n” , y);

printf(“%f \n”, y);

printf(“%-7.2f\n” , y);

printf(“%-07f \n”, y);

getch();

}

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

Programming Methodology Notes Page 48

Out put

98.76754

98.765404

98.77

98.77

6.10. Commonly used Printf Formats

%d Out put for integer

%f Out put for floating number

%c Out put for single character

%s Out put for string

6.11. Enhancing readability of Output.

 Provide enough blank spaces between two numbers.

 Introduce appropriate headings and variable names in the output

 Print special messages whenever a peculiar condition occurs in the output.

 Introduce blank lines between the important sections of the output.

Chapter Review Questions

1. State whether the following statements are true or false

a) The purpose of the header file <studion.h> is to store the programs created by the user

b) The C standard function that receives a single character from the keyboard is getchar.

c) Format specifiers for out put convert internal representations for data to readable characters

2. Write scanf statements to read the following data lists

a) 78 B 45

b) 123 1.23 45A

c) 15 – 10 – 2011

3. The variables count, price and city have the following values

Variable Value

count 1275

price 235.75

City Nairobi

Show the exact output that the following output statements will produce;

a) printf(“%d %f \”, count, price);

b) printf(“%2d\n %f”, count, price);

c) printf(“%d %f”, price, count);

4. Write a program to read the following numbers, round them off to the nearest integers and print out the

results in integer form;

35.7 50.21 -2373 -46.45

w
w
w
.m

as
om

om
si
ng

i.c
om

w
w
w
.m

as
om

om
si
ng

i.c
om

