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SPH101 Electricity and Magnetism I 

 

Lecture No. 1.  
Outline 

 

concept of charge 

Coulomb’s law 

 

properties of electric 

charge the electric eld 

 
Concept of charge. The Greek philosophers, as early as 600 BC, knew that 

if you rubbed amber it could pick up pieces of straw. They also knew that some 

naturally occurring stones which we now know as mineral mag-netite would 

attract iron. These are some of the early and modest origins of the concept of 

charge and charged bodies. The science of electricity and magnetism, and later 

electromagnetism, developed from these origins. Some of the early pioneers of 

this subject in physics include Hans Christian Oer-sters, Michael Faraday, 

James Clark Maxwell, Charles Augustin Coulomb and later developments by 

Oliver Heaviside, H. A. Lorentz, Heinrich Hertz, Albert Einstein, Steven 

Weinberg, Abdus Salam and Sheldon Glashow. 

 

If you walk across a carpet in dry weather, you can draw a spark by 

touching a metal door knob. On a large scale, lightning is familiar to 
every one. Such phenomena suggest vast ammounts of electric charge 

that is stored in familiar objects arround us. Generally most bodies 
arround us have balanced charges hence the electrical neutrality. A body 
is said to be charged when there is charge imbalance within the body. 

Charged bodies exert forces on each other. 
 

Illustrations: A glass rod can be charged by rubbing it with silk. Rub-
bing causes transfer of small amounts of charge between the bodies 

thus upsetting the electrical neutrality in each of the bodies. If two such 
charged rods are suspended by a thread and brought close, they would 

repel each other. However, if you rub a plastic rod with fur, it attracts the 
charged end of the glass rod as illustrated on Figure 1.1. This illustrates 
the following concepts, 

 

1. there are two kinds of charges - positive and negative, and 
 

2. like charges repel each other while unlike charges attract each other. 
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Figure 1.1: An illustration of the concept of charge (a) two positively 
charged glass rods repel each other and (b) a positively charged glass 
rod and a negatively charged platisc rod attract each other. 

 

 

Electrostatics is the study of charges that are either at rest with respect 
to eacht other or moving very slowly. Conductors allow the ow of charge 
easily whereas non-conductors do not allow ow of charges. Example of 
conduc-tors are metals, tap water, human body etc. Non-conductors 
include glass, chemically pure water, plastics, etc. 

 

Assignment 1: What are semi-conductors? 

 

Coulomb’s law. Experiments by Charles Ausgustine Coulomb (1736 - 
1806) and his contemporaries showed that the magnitude of the 
electrical force F exerted by a body on another depends directly on the 

product of the two charges q1; q2 and inversely proportional to the 
square of their separation distance r, i.e. 

 

F / 
q

1 
q

2 

r
2
  

or, 

F = k 
q1 q2 

(1.1)  

r2 
 

  
  

The Equation (1.1) is called Coulomb’s law and it holds for charged 
bodies whose sides are much smaller that the distance between them, 
i.e. point charges. 
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In the SI system, the constant k is expressed in the following form, 
 

k = 

1 

(1.2) 

 

4  0 
  

 

where ’ 8:85 10 12C2=Nm2 is the permittivity constant. Therefore, the 

constant k takes the value k ’ 8:99 109Nm2=C2. 

 

Assignment 2: Compare Coulomb’s law and Newton’s law of gravitation, 
 

F = G 
m

1 
m

2 

r2  
 

which was already more that 100 years old at the time of the 
experiments by Coulomb. 

 

Coulomb’s law in vector form. Consider two point charges q1 and q2 

separated by a distance r12 such that, F12 is the force exerted on the 

charge q1 by charge q2, and, r12 is the distance between the two point 
charges as illustrated on Figure (1.2).  

 
 
 
 
 
 
 
 
 
 

 

Figure 1.2: The force experienced by (a) two point charges of like 
charges and (b) two point charges of unlike charges. 

 

 

The position vector of the point charge q1 relative to the q2 is denoted as 

r12, with a unit vector ^r12. If the two point charges are have the same 

sign then the force F12 is repulsive and must be parallel to r12. If the 

charges have opposite charges, then the force F12 is attractive and anti-

parallel to r12. In either case, the force is represented as, 
 

F12 = k 

q1q2 

^r12 (1.3) 

 

r12
2
 

   

where r12 is the magnitude of r12. 
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Similarly, the fore exerted on the point charge q2 by q1 is, 
 

F21 = k 

q1q2 

^r21 : (1.4) 

 

r21
2
 

  
 

The vector form of Coulomb’s law carries directional information of the 
forces and whether they are attractive or repulsive. It is very useful when 
describing the forces acting on an assembly of more than two charges. In 
such cases, Equation (1.3) would hold for each pair of charges. The total 
force on any one charge would then be found by taking the vector sum of 
the forces due to each of the other charges. For example, the net force 

acting on a charge q1 in an assembly of n point charges is, 
 

n 
Xi   

F1 =    F1i = F12 + F13 + F14 + ::: + F1n : (1.5) 
=2   

 

This is a mathematical representation of the principle of superposition 
ap-plied to electric forces (though not valid for very strong electric 
forces). Coulomb’s law correctly describes the following concepts, 

 

the electrical forces that bind the electrons of an atom to its nucleus, 

the forces that bind atoms together to form molecules, and, 
 

the forces that binds atoms and molecules to form solids or liquids. 
 

Example 1: Consider three point charges q1  = 1:2 C, q2  = +3:7 C 

and q3 = 2:3 C separated by distances r12 = 15 cm and r13 = 10 cm as 

illustrated on Figure 1.3. The charge q3 makes an angle = 320 with the y-

axis. The Coulomb force experienced by the charge q1 due to the charge 

q2 has a magnitude given by,  

q1q2 
F12

  
= k

 r122 
 

 

= (8:99 109Nm2=C2) 
(1:2 10

 
6C)(3:7 10

 
6C)

 = 1:77 N 

(0:15m)
2
   

The charges q1 and q2 have opposite signs, hence F12 is attractive force. 
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Figure 1.3: Three point charges on a Cartesian coordinate system. 
 

 

Similarly, the Coulomb force experienced by the charge q1 due to the 

charge q3 has a magnitude is given by,  

q1q3 
F13

  
= k

 r132 
 

 

= (8:99 109Nm2=C2) 
(1:2 10

 
6C)(2:3 10

 
6C)

 = 2:48 N 

(0:1m)
2
   

The charges q1 and q3 have the same signs, hence F13 is repulsive 

force. The components of the resultant force F1 is calculated as follows, 
 

F1x  = F12x + F13x  = F12 + F13 sin 

 

 

= 1:77N + (2:48N)(sin 320) = 3:08 N 

 

F
1y  

=
 
F

12y 
+

 
F

13y  
= 0

 F13 cos 

=   (2:48N)(cos 320) = 2:10 N 
 

so that in vector form, the resultant force F1 is, 
 

F1 = F1x ^i + F1y ^j = 3:08^i 2:10 ^j N : 
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The magnitude of the resultant force F1 is calculated as follows, 
 

q  

F1  = (F1x)2 + (F1y)
2  = 3:73 N 

 

and the angle it makes with the x-axis is given by, 

 

 

= tan 1 
F1y = 34:290 : 

F
1x 

 
 

 

Properties of the electric charge 

 

1. Quantisation: Just as matter is discrete, i.e. solids, liquids and 
gases are made up of atoms and molecules, the electric charge is 
also discrete or quantised. It’s magnitude is in multiples of the 
elementary charge e. That means, any charge q that can be 
observed and measured directly, can be written as follows, 

 

q = ne n = 0; 1; 2; 3; ::: (1.6) 

 

in which e, the unit of the elementary charge has the experimentally 

determined magnitude of e ’ 1:602 10 19 C with an experimental 

uncertainty of about 3 parts in 107. Therefore the electrical charges 
for the electron, proton and neutron can be expressed as follows,  

 

particle charge(e)   
electron -1  
proton +1  
neutron 0  

 

Protons and neutrons are composite particles made up of quarks. Pro-

tons have two up-quarks and one down-quark, and the neutrons have two 

down-quarks and one up-quark. The up- and down-quarks are as-signed 

charge +2
3 e and -13 e respectively, thus accounting for the net charge 

+e on the proton and zero charge on the neutron. The subject of 

elementary particle physics is rather beyond the scope of this course. 
 

2. Conservation: When a glass rod is rubbed with silk, positive charge 
appears on the rod. Measurement shows that a corresponding 
negative charge appears on the silk. This suggests that rubbing 
does not create charge but merely transfers it from one object to 
another, disturbing slightly the electrical neutrality of each. 
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In nature, physical processes occur in such a way that charge is 
con-served. Consider an electron (charge -e) and a positron 
(charge +e) are brought close to each other. They annihilate each 
other convert-ing all their rest energy into radiation, typically two 
oppsitely directed gamma-ray photons each of energy 511 keV, 

 

e  + e+  !  +  : (1.7) 
 

Photons carry no charge. The net charge is zero both before and after 

the event and therefore charge is conserved. Another example is the 

decay of a neutral - meson or pion into two gamma-ray photons, 
 

0!+: (1.8) 
 

The net charge is zero before and after the decay process. Next 
consider the decay of a neutron into a proton with the emission of a 

particle (fast moving electron) and an electron anti-neutrino e, 
 

n ! p + e  +  e : (1.9) 
 

The net charge is zero before and after the decay. The emission of 
an electron anti-neutrino is required to conserve electron lepton 
number. A detailed treatment of conservation laws in elementary 
particle physics is rather beyond the scope of this course. 

 
 

 

The Electric Field: The electric eld E associated with a collection of 
charges is de ned in terms of the force F exerted on a positive test 

charge q0 at a particular point or, 

E = 
F 

(1.10)  
q0 

 

  
  

The direction of the electric eld E is the same as that of the force F 

because q0 is a positive scalar quantity. The SI unit for the electric eld is 
Newton per Coulomb (N/C). 

 

Example 2: Consider a 5 nC test charge placed at a point such that it 

experiences a force of 2 10 4 N in the x-direction. The electric eld at that 
point is, 

 

E = 2  104N i = 4 
 

104 i N=C 
 

 5 

 

10 9 C  
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The electric eld of point charges: Let a positive test charge q0 be placed 
at a distance r from a point charge q. The magnitude of the force acting 

on q0 is given by Coulomb’s law, 

F = 1
 

qq
0 : 

 

4 0 r2 
 

The magnitude of the electric eld at the site of the test charge is, 
 

F 1   q 
E

 
=

 q0  
=

 4  0 r2 
:
 

 
 

To nd the resultant electric eld E on a point charge due to other point 
charges, the procedure is as follows; 

 

calculate the electric eld E due to each charge at the given point as 
if it were the only charge present, 

 

add the electric  elds vectorially to  nd the resultant  eld, i.e. 
 

X 

E = E1 + E2 + E3 + ::: = Ei (i = 1; 2; 3; :::) 
 

i 
 

where, 
 

1 qi 
Ei

  
=

 4  0 ri2 
:
 

 
 

The sum is a vector sum taken over all the charges. This is also an 
exam-ple of the principle of superposition, which states in this context, 
that at a given point the electric elds due to separate charge distributions 
simply add up vectorially or superpose independently. This principle may 
fail when the magnitudes of the elds are extremely large, but it will be 
valid in all the situations discussed in this course. 

 

Example 3: Consider the charges q1 = 1:5 C and q2 = 2:3 C placed on the 

x-axis as illustrated on Figure 1.4. The charge q1 is placed at the origin and 

the charge q2 is placed at a distance l = 13 cm. Since the two charges have 
the same sign, they will repel each other. At some point P along the x-axis, 
the electric elds strengths are equal and hence the resultant eld is zero. 
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Figure 1.4: Two point charges along the x-axis on the Cartesian 
coordinate system. At the point P the two elds are equal and hence the 
resultant eld is zero. 

 

 

If E1 and E2 are the electric elds due to the charges q1 and q2 respectively, 

then at the point P the two vectors must be equal, i.e. E1 = E2, 
 

1  q1 
= 

1   q1 
 

        

4  0 x2
 4  0 (l x)2 

 

 
 

 

where x is the coordinate of the point P as illustrated on Figure 1.4. At 

the point P, the electric elds of the charges q1 and q2 are equal and 
opposite, so the net eld is zero. Solving the above equation for x yields, 

 

  l    13cm 
 

x =      =        = 5:8 cm  

           

 

 

 
q   

1 + q    
 

1 + q1 1:5 C  

    q2    2:3 C 
 

                

 

 

The solution x = 5:8 cm is a positive value and is less than l (= 13 cm), 
con rming that the zero- eld point P lies between the two charges. 

 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 2.  
Outline 

 

the lines of force for the electric eld 

the electric potential 
 

the electric dipole 

 

The lines of force for an electric eld: It is often convenient to use lines in 
visualising the electric eld. They are usualy referred to as lines of force 
or electric eld lines and they have the following features, 

 

they indicate the direction of the electric  eld, and, 
 

they originate on the positive charge(s) and terminate on the 
negative charge(s) as illustrated on Figure 1.5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.5: Illustrations of the electric eld lines. 
 

 

The lines of force are drawn such that the number of lines per unit cross-
sectional area (perpendicular to the lines) is proportional to the 
magnitude of the eld. 
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The electric potential: Consider a particle of charge q moving in a 
uniform electric eld E from an initial point a to a nal point b as illustrated 
on Figure 1.6. The particle experiences a force F given by,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.6: The motion of a point charge in a uniform electric eld E. 
 
 

 

F = qE (1.11) 

 

often referred to as coulombic or electrostatic force. A potential energy is 
associated with any system in which a cahrged particle(s) is placed in an 
electric eld and acted on by an electrostatic force. The change in electro-
static energy, when a particle of charge q moves in an electric eld E is 
given by, 

Z b Z b 

Ub U a = F ds = q E ds : (1.12) 
a a  

Ua and Ub are the potential energies of the particle at points a and b. The 

integral is carried out over the path of the particle from initial point a to nal 

point b. The electric eld E (and hence force F) is conservative, the inte-gral 

is independent of the path. It depends only on the initial and nal point. 
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System of point charges: Consider a system of two point charges q1 and 

q2 as illustrated on Figure 1.7. The charge q2 moves relative to the 

charge q1 through a displacement dS. The electric eld E is due to the 

positive charge q1.  
 
 
 
 
 
 
 
 

Figure 1.7: The motion of a point charge in a uniform electric eld E. 
 

 

The change in potential energy is, 

 
          r  

 

U = Ub  
U

a  
=q

2 Zra b Ex dx 
 

   1   r
b dr  

 

= 

    

q
1
q

2 
Z

ra 

  

 

 
 

  4  0 r2  
 

 
1 

     
 

   1 1    
 

=  

 

q
1
q

2 

     
 

4  0 rb ra  
  

If a reference point a is chosen such that ra corresponds to an in nite 

sepa-ration of the particles, and we de ne the potential energy Ua to be 
zero. Let r be the separation at the nal point b, so that, 

 

U(r) = 

1  q1q2 

(1.13) 

 

     

4  0  r 
 

 

is an expression of the electrical potential energy of the system of point 
charges. Similarly, for a system of three point charges, 

U(r) = 4  0 r1122 + r113
3
 +  r223

3
  : (1.14) 

1  q q  q q  q q    
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The Potential Di erence: As already seen, the change in potential energy 

q2 moving from point a to point b is given by, 
 

U = Ub    Ua  =   q2 
Z

 

r 

b E dr : 

 

ra 
  

The potential di erence dV is de ned as the potential energy change per 
unit charge, 

 

dV  = 

dU 

=   E dr 

 

q2 
  

 

and for a nite displacement from point a to point b, 

V  = Vb Va  = 
U =   Z b E dr : (1.15) 

 
q a 

 

The potential di erence V is the work per unit charge q necessary to 
move a test charge at constant speed from point a to point b. The SI unit 
for potential, the Joule per Coulomb, is called volt (V), i.e. 1 V = 1 J/C. 
Therefore the unit for the electric eld E, the Newton per Coulomb, is also 
equal to volt per meter, i.e. 1 N/C = 1 V/m. A convenient unit of energy is 
the electron volt (eV), given by, 

 

1eV = 1:6 10 19C V = 1:6 10 19J : 

 

Example 1: Consider the Bohr model of the atom (electrons orbit round 
the nucleus in concentric circles). The rst Bohr orbit in hydrogen atom 

has a radius r ’ 0:529 10 10 m. The electric potentialbetween an electron 
and a proton is, 

V  = 
 kq 

= 
(8:99  109 Nm2=C2)(1:6  10 19C) 

= 27:19 V  

 

r 0:529  10 10m 

 
 

     
 

and the potential energy is,   
 

U = q V = (1:6  10 19C)(27:19V) =   4:36 10 18J = 27:19 eV 
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Example 2: Consider two protons that are 6.0 fm apart in the nucleus of 

a 238U atom. The potential energy that associated with the electric force 
that acts between these two particles is given by, 

 

U = k q1q2 = (8:99 
 

109 Nm2=C2) (1:6  10 19C)2 
 

r 
 

 

   6 

 

10 15m 
 

       
  

 

= 3:84 10 14 J = 240 keV 

 

The two protons do not y apart because they are held together by the at-
tractive strong force that binds nucleons in a nucleus together. 

 

Example 3: An - particle (q = +2e) is is produced in a nuclear accelera-

tor such that it moves from one terminal at a potential Va = 6:5 106 V to 

another terminal at zero potential, Vb = 0. 

 

The corresponding change in the potential energy of the system is, 
 

U = Ub Ua  = q(Vb Va) 
 

 

= 2(1:6 10 19C)(0 6:5 106V) = 2:08 10 12 J ’ 13:13 MeV 
 

If no external force acts on the system, then it’s mechanical energy, 
 

E=U+K 

 

remains constant. That is, 
 

E= U+ K=0 

 

hence, 
 

K = U = 2:1 10 12 J = 13:13 MeV 

 

represents the gain in kinetic energy of the - particle. 
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Example 4: Consider a gold nucleus, with radius is 7 10 
15

 m and the atomic 

number is 79. The nucleus is assumed to be spherically symmetric and 
behaves electrically for external points as if it were a point charge. The 
electric potential at the surface of the nucleus is then evaluated as follows, 

 

V  = k 
q 

= (8:99 

 

109 Nm2=C2) 
(79)(1:6 10 19 C) 

= 1:62 

 

107
 V 

 

r 7 1015 m 
 

      
  

This large positive potential has no e ect outside a gold atom because it 
is compensated by an equally large negative potential due to the 79 
electrons in the atom. 

 
 

 

The electric dipole: The gure 1.8 shows a positive and negative charge 
of equal magnitude placed a distance d apart. They constitute an electric 
dipole. The positive and negative charges set up electric elds E+ and E-
respectively. The resultant electric eld at the point P is, 

 

E=E++E 

 

The magnitudes of these two elds at point P are equal because P is 
equidis-tant from the positive and negative charges, 

 

E+=E = 

1   q 

= 

1  q 

: 

 

      
 

4  0 r2 4  0 x2 + (d=2)2 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.8: The electric dipole, made up of two opposite charges of 
magnitude q separated by distance d. At the point P on the x-axis, the 
resultant eld has only a z-component. 
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At the point P, the component of the resultant eld along the x-axis is zero, 
 

E+ sin E sin = 0 

 

and along the z-axis, 
 

E = E+ cos  + E  cos  = 2E+ cos  : 
 

The angle is given by, 
 

 

cos  = 

  d=2    
 

    

 

   
 

 

p 

     

hence, x2 + (d=2)2     
 

 

E = 

1    qd  

: (1.16) 

 

   

 

  
 

 4  0  x2 + (d=2)2 3=2 
 

The total eld is proportional to the product qd, called the electric dipole 
moment P, de ned as,  

P = qd : (1.17) 
 

The dipole moment is a fundamental property of molecules, which often 
contain a negative charge and an equal positive charge separated by 
some de nite distance. 

 

Example 5: Consider the molecule of NaCl as composed of a Na
+
 ion with a 

charge +e and a Cl ion with a charge -e. The separation between Na and Cl 
measured in NaCl is 0.236 nm. The dipole moment is expected to be, 

 

P = ed = (1:6  10 19C)(0:236  10 19m) = 3:78  10 29C m 
 

The measured value is 3 10 29 C m indicating that the electron is not 
entirely removed from Na and attached to Cl. To a certain extent, the 
electron is shared between Na and Cl, resulting in a dipole moment 
smaller than expected. 
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A dipole in an electric eld: Consider an electric dipole that consists of two 

equal and opposite charges +q and -q separated by a distance d. When it is 

placed in an external electric eld as illustrated on Figure 1.9, the force on 

the positive charge wii be in one direction and the force on the negative 

charge will be in another direction. To account for the net e ect of these 

forces, it is convenient to introduce the dipole moment vector P. The vector 

P has magnitude p = qd. and direction along the line joining the two charges 

pointing from the negative charge towards the positive charge.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.9: An electric dipole in an external eld E 
 

 

The forces on the two charges are given as F = qE and opposite in 
direction, hence the net force is zero but there is a net torque T about its 
centre of mass that tends to rotate the dipole and bring the dipole 
moment vector P in alignment with the electric eld vector E. The 
magnitude of the torque is given by,  

T = F (d=2) sin  + F (d=2) sin  = F d sin (1.18) 
 

with a direction perpendicular to the plane of the page and into the page, 
i.e. 

 

T = (qE)d sin  = (qd)E sin  = P E sin 
 

or in vector form,  

T=P  E: (1.19) 
The work done by the electric eld in turning the dipole from an initial 

angle 0 to a nal angle is,  
Z Z Z  

W = dw = T d = T d (1.20)  
0 0 

 

where T is the torque exerted by the external eld. The vectors T and d 
are in opposite direction, so T d = T d . 
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Z Z 
 

W = P E sin d = P E sin d 

0 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

= P E  cos cos 0 : 
 
 

Since the work done by the agent that produces external eld is equal to 
the negative of the change in potential energy of the system of eld and 
dipole, wehave, 

 
  

U = U( ) U( 0) = W = P E  cos cos 0
 : 

 

0 is arbitrarily de ned as the reference angle to be 900 and U( ) chosen 
to be zero at that angle. At any angle , the potential energy is then, 

 

U =   P E cos 
 

which can be written in vector form as, 
 

U=PE (1.21) 
 

showing that the potential energy U is minimum when the dipole moment 
vector P and the electric eld E are parallel. The motion of a dipole in a 
uniform electric eld can therefore be intepreted either from the 
perspective of force or energy. The choice between the two is a matter of 
convenience in application to the problem under study. 

 

Note that the resultant torque in the dipole tries to rotate it into alignment 

with the the direction of the external eld. The potential energy of the sys-tem 

tends to be a minimum when the dipole is aligned with the external eld. 
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Example 6: A molecule of water vapour (H2O) has an electric dipole mo-  

ment of magnitude p = 6:2 10 30 C m as illustrated on Figure 1.10. The 
dipole moment arises because the e ective centre of positive charge 
does not coincide with the e ective centre of the negative charge.  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.10: A molecule of water vapour with a dipole moment P. 
 

 

(a) How far apart are the centres of positive and negative charges in 

a molecule of H2O? 

 

There are 10 electrons and correspondingly 10 positive charges in this 
molecule. The magnitude of the dipole moment is, 

 

P = qd = (10e)d 
 

from which the separation distance d can be evaluated, 
 

d = P  =  6:2  10 30C m = 3:88 
 

10 13 m :  

10e 
 

 

  (10)(1:6 

 

10 19C)   
 

          
   

This is about 4% of the OH bond distance in this molecule. 
 

(b) What is the maximum torque on a molecule of H2O in a typical 

lab-oratory electric eld of magnitude 1:5 104 N/C ? 
 

The resultant torque is a maximum when = 900, hence, 
 

Tmax  = P E sin = (6:2 10 30 C m)(1:5 104 N=C)(sin 900) = 9:3 10 26 N m 
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(c) Suppose the dipole moment of a molecule of H2O is initially 

pointing in a direction opposite to the eld. How much work is done by the 
electric eld in rotating the molecule into alignment with the eld? 

 

The work done in rotating the dipole from = 1800 to = 0
0
 is given by, 

W = P E cos cos 0 = P E cos 00
 cos 1800 = 2P E 

 

 

= 2(6:2 10 30 C m)(1:5 104 N=C) = 1:86 10 25 J 

 

 

By comparison, the average translational contribution to the initial energy (= 

3/2 KT) of a molecule at room temperature is 6:2 10 
21

 J, which is about 

33,000 times larger than the calculated value of the work done to align the 

H2O molecule. For the conditions of this problem, thermal agitation would 

overwhelm the tendency of the dipoles to align themselves within the eld. 
That is, if one had a collection of molecules at room temperature with 
randomly oriented dipoles, the application of an electric eld of this mag-
nitude would have negligible e ect on aligning the dipole moments. This is 
because of the large internal energies. If one wishes to align the dipoles 
then much stronger elds and/or much lower temperatures must be used. 

 

Assignment: Brie y describe the Millikan’s oil drop experiment. Your 
description shoul include the following; 

 

aim of the experiment 

theretical framework 

 
sketch of the experiment 

 

observations and conclusions 
 
 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 3.  
Outline 

 

capacitors: parallel-plate, cylindrical, 

spherical energy stored in capacitors 

 

series and parallel arrangements of capacitors 

 

Capacitors: As early as 1745, the german scientist Ewald Georg von 
Kleist found that a volume of water in a glass jar could store charges if 
some high voltage is applied to a wire in the jar. A year later, the danish 
physicist, Peter van Musschenbroek invented a similar device to store 

charges. This device, later named the Leyden jar1 is an early form of a 

capacitor (also referred to as condenser). 

 

The Leyden Jar is typically made of a glass jar with tin foil linnings and a 
brass rod terminating in an external knob at the top of the jar as 
illustrated on Figure 1.11. When an electrical charge is applied to the 
knob, positive and negative charges accumulate in the metal coatings of 
the glass jar. Leyden jars found useful applications to store electricity in 
experiments and also in some early wireless equipment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.11: The sketch of a Leyden jar  
 
 

 
1 after the University of Leyden where Peter van Musschenbroek worked
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Capacitors are devices that store electrical energy. Two conductors that 
are isolated from one another and their sorroundings form a capacitor. 

When a capacitor is charged, the conductors carry equal and opposite 
charges of magnitude q. The two conductors are called plates no matter 
what their shape is. Note that q is not the net charge on the capacitor. 

The net charge of the capacitor is zero. The magnitude of the charge on 
either plate of the capacitor will be denoted by q. 

 

A capacitor can be charged by connecting the two plates to opposite 

termi-nals of a battery. In charging the capacitor, the battery transfers 
equal and opposite charges to the two plates. The potential di erence of 
the battery appears across the plates. The magnitude of the potential di 
erence is rep-resented by V and is directly proportional to the magnitude 
of the charge q on the capacitor, i.e., 

 

q / Vhence    q = C V (1.22) 
 

in which C is the capacitance of the capacitor. This is a constant value 
and depends on the geometry of the capacitor. The SI unit for 
capacitance is the Farad (F), 

 

1 F = 1 Coulomb per Volt = 1 C=V 

 

named after Michael Faraday who, among his other contributions to 
science, developed the concept of capacitance. 

 

Example 1: A storage capacitor on a random access memory (RAM) 
chip has a capacitance of 55 pF. If it charged to 5.3 V, how many excess 
electrons are there on it’s negative plate? 

 

The charge on the plate of the capacitor is given by q = Ne and also q = 
CV , hence the number of excess electrons is given by, 

 

N = q = CV =  (55  10 15 F)(5:3 V)  = 1:8 
 

106 electrons:  

 

e 
 

e 
 

 

     1:6 

 

10 19 C   
 

               
  

This is a very small number of electrons. A speck of household dust, so tiny 

that it essentially never settles, contains about 10
17

 electrons (and the same 

number of protons). Besides good aesthetics, this is one more reason to 
keep any form of dust away from electrical and electronic appliances. 
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Example 2: A 90 pF capacitor is connected to a 12 V and charged to 12 
V. How many electrons are transferred from one plate to another? 

 

The charge transferred is given by, 
 

q = CV = (90  10 12F(12V) = 1:19  10 19C 
 

so that the number of electrons transferred is, 
 

N = q = 1:19  10 19 C  = 6:9 
 

109 electrons:  

e 
  

  1:6 

 

10 19 C   
 

          
  

 

The electric eld in a capacitor: The electric eld is related to the charge on 
the plates of a capacitor by Gauss’ law, 

 

I 

0 E dA = q (1.23) 

 

or simply, 
 

0 E A = q 

 

in which A represents the area of that part of the gaussian surface 
through which the ux (or electric eld lines) passes. The potential di 
erence between the plates is related to the electric eld E by, 

 

Z f 

Vf Vi  = E ds : 
i 

 

If the absolute value of the potential di erence is denoted as V then, 
 

Z  
V  = Eds (1.24)  

+ 
 

in which the + and - signs indicate that the path of integeration starts on the 

positive plate and ends on the negative plate. The electric eld between the 

plates of a capacitor is the sum of the elds due to the plates. 
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Parallel-plate capacitor: Consider a parallel-plate capacitor illustrated on 
Figure 1.12. The plates of the capacitor are assumed to be su ciently 
large and close together so as to neglect the fringing of the electric eld at 
the edges of the plates.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1.12: A cross-section of a parallel-plate capacitor. The Gaussian 
surface encloses the charge on the positive plate of the capacitor. 

 

 

The magnitude of the electric eld is given by, 
 

 
E = 

q     
 

 

0A 
   

 

      
 

and the potential di erence is,         
 

V =
Z

+ Eds =  0A Z  d ds =  0A : 
 

0    

  q       qd 
 

Since V = q=C then,           
 

 

C =  0 

A    
 

       
 

  d    
 

 
 
 
 
 

 

(1.25) 
 
 
 
 
 
 
 
 
 

 

(1.26) 
 

showing that the capacitance depends only on the geometrical factors 
namely plate area A and plate separation d. 

 

Example 3: The plates of a parallel-plate capacitor are separated by a dis-tance 

d = 1 mm. What must be the plate area if the capacitance is to be 1 F? 

 
 

 

A = 
C d 

= 
(1 F)(1  10 3 m) 

= 1:13 

 

108 m2
 

 

0 8:85  10 12 F=m 
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Cylindrical capacitor: Consider a cylindrical capacitor of length L formed 
by two coaxial cylinders of radii a and b as illustrated on Figure 1.13. We 
assume that the length of the cylinders is much greater than their radii, L 
>> b so that we can neglect the fringing of the electric eld at the ends of 
the cylinders.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.13: A cross-section of a cylindrical capacitor. The Gaussian surface 
encloses the charge on the positive inner cylinder of the capacitor. 

 

 

As a Gaussian surface we choose a cylinder of length L and radius r 
closed by the end caps. The charge enclosed is, 

 

q =  0 E A =  0 E (2 rL) 

 

in which 2 rL is the area A of the curved part of the Gaussian surface. 
The magnitude of the electric eld is therefore given by, 

 

E = 

q 

(1.27) 

 

2  0Lr 
  

 

so that the potential di erence across the plates is, 

V =
Z

+ Eds = 2  0L 
Z

 a b 
d

r
r
 = 2  0L ln a : 

  q      q    b   
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The capacitance is therefore,  
 

C=2 0 

L 

(1.28) 
 

 
 

ln(b=a) 
 

 

which depends on the geometrical factors a; b; L. 

 

Example 4: The space between the conductors of a long coaxial cable used  
in TV signal transmission has an inner radius a = 0:15 mm and an outer  
radius b = 2:1 mm. What is the capacitance per unit length of this cable? 

 

The capacitance per unit length is given by,     
 

 C 
= 

2  0  
= 

2 (8:85  10 12 F=m) 
= 21 

 
10 12

 F m : 
 

 L ln(b=a) ln(2:1=0:15)  

      
  

 
 
 

Spherical capacitor: Consider a spherical capacitor which consists of two 
concentric spherical shells of radii a and b as illustrated on Figure 1.14. 
The charge enclosed is, 

 

q =  0 E A =  0 E (4 r2) 
 

in which 4 r2 is the area A of the spherical Gaussian surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.14: A cross-section of a spherical capacitor. The Gaussian surface 
encloses the charge on the positive inner sphere of the capacitor. 
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The magnitude of the electric eld is therefore given by, 
 

E = 

1  q 

(1.29) 

 

    

4  0  r2 
 

 

which is the expression for the electric eld due to a uniform charge distri-
bution. The potential di erence across the plates is, 

 

V =
Z

+ Eds = 

q 

Z 

b dr 
 

    

4  0 a  r2 
 

 

 

= 
q

  ln  
1    1

  
4  0a    b  

 

 

 

= q  ln  b  a  
4  0ab  

 

The capacitance is therefore, 
 

  
ab 

C
 
= 4

 0 b a 
:
 

(1.30)
 

 
 

 

Isolated sphere: We can assign capacitance to a single isolated 
conductor by assuming that the missing plate is a conducting sphere of 
in nite radius. After all, the eld lines that leave the surface of a charged 
isolated conductor must end somewhere, the walls of the room in which 
the conductor is housed can serve e ectively as our sphere of in nite 
radius. If we let b ! 1 and substitute R for a in Equation (1.30), then 

 

C=4 0R (1.31) 
 

the capacitance depends on the radius of the isolated spherical conductor. 

 

Example 5: If the Earth is considered an isolated conducting sphere of 
radius 6370 km, then the capacitance is, 

 

C = 4 0R = 4 (8:85 10 12 F=m)(6:37 106 km) = 7:1 10 4 F : 
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Energy storage in an electric eld: Any charge con guration has a certain 
potential energy U, equal to the work W (which may be positive or 
negative) that is done by an external agent that assembles the charge 
con guration from their individual components which are assumed to be 
in nitely far apart and at rest. Consider a parallel capacitor: suppose at a 
time t some charge q has already been transferred from one plate to the 

other. The potential di erence V 0 between the plated at that moment is V 
0 = q0=C. If an increment of charge dq0 is now transferred, the resulting 
small charge dU in the electric potential energy is, 

 

dU = V 0dq0 = 
q0

 
dq0

 (1.32) 
 

C  

   
 

 

where V 0 and q0 denote instantaneous values of the potential di erence 
and charge respectively. If this process is continued untill a total charge 
q has been transferred, the total potential energy is,  

U = 
Z

 dU = 
Z

 

q q   q2
  

 

0 

0 

dq0 = 

  

(1.33) 

 

C 2C 
 

and using q = CV then,  
1 

       
 

 
U = CV 2 : 

  
(1.34) 

 

 2 
  

 

         
  

The energy stored in a capacitor resides in the electric eld between it’s plates 

as we shall see in the next steps. In a parallel-plate capactitor, neglecting 

fringing e ects, the electric eld has the same value for all points between the 

plates. It follows that the energy density u, which is the stored energy per unit 

volume, should also be the same everywhere between the plates, 

U 1CV 2 

u = Ad =  2 Ad 
 
 

and on substituting the expression for capacitance in Equation (1.26), 
2 

u = 0 V 
 

 

However, v=d is the electric eld E, so that, 
 

u = 
1

2 0E2 : (1.35) 
 
 

This result, though derived for the special case of parallel-plate 
capacitor, hold for other capacitors in general. If an electric eld E exists 
at any point in space, then that point is a site for stored energy. 
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Capacitors with dielectric material: We have so far calculated the ca-
pacitance assuming that there is no material in the space between the 
plates of the capacitor. The region between the plates of a capacitor can 
be lled with a variety of insulating materials known as dielectrics. The 
presence of the dielectric materials alters the capacitance of the 
capacitors and (possibly) the electric eld between it’s plates. 

 

In 1837 Michael Faraday (1791 - 1867) investigated the e ect of lling the space 

between capacitor plates with dielectrics. He constructed two identical 

capacitors, lling one with dielectric and the other with air under normal 

conditions. When both capacitors were charged to the same potential dif-

ference, Faraday’s epxeriments showed that the presence of the dielectric 

material increased the charge and hence the capacitance of a capacitor. The 

dimensionless factor by which the capacitance increases, relative to it’s value 

C0 when no dielectric material is present, is called the dielectric constant, 
 

ke  = 

C 

(1.36) 

 

C0 
  

 

which is a fundamental property of the dielectric material and is 
independent of the size or shape of the conductor. Some typical 
dielectric materials are as follows. 

 

Table 1.1: Some typical dielectric materials and their constants 
measured at room temperature. 

 

 dielectric dielectric 

material constant ke strength (kV/mm) 

vacuum 1 (exact) 1 

air (1atm) 1.00059 3 
   

polystyrene 2.6 24 
   

paper 3.5 16 
   

transformer oil 4.5 12 
   

pyrex 4.7 14 
   

mica 5.4 160 
   

porcelain 6.5 4 
   

silicon 12  
   

water (200C) 80.4  

titania ceramic 130  
   

strontium titanate 310  
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Note that for most practical applications, air and vacuum are equivalent 
in their dielectric e ects. Every dielectric material has a characteristic 
dielectric strength, which is the maximum value of the electric eld it can 
tolerate without breakdown. The e ect of dielectric materials can be 
summarised as follows, 

 

for a parallel plate capacitor lled with dielectric material of dielectric 

constant ke, the capacitance is increased by a factor ke, 
 

A   

C
 
=

 
k

e 0 d ; (1.37)  
 

for a point charge q embedded in a dielectric material, the electric 

eld is reduced by a factor ke, 
 

E = 

1  q 

: (1.38) 

 

    

4 ke 0 r
2

 
 

 

Generally, the presence of dielectric materials increase the charge 
stored (and hence capacitance) but weaken the electric elds (and hence 
the en-ergy stored) in capacitors. 

 

Types of capacitors: Capactors may be divided into the following ve main 
groups according to the nature of the dielectric material used. 

 

1. air capacitors: usually consist of one set of xed plates and another 
set of movable plates. They are mainly used in radio receivers 
where it is required to vary the capacitance. 

 
2. paper capacitors: have electrodes which consist of metal foils inter-

leaved with paper with waxor oil and rolled into a compact form. 
 

3. mica capacitors: consist of alternate layers of mica and metal foils 
clamped tightly together or thin lms of silver sputtered on the two 
sided of mica substrate sheet. 

 
4. ceramic capacitors: have electrodes which consist of metallic coat-

ings (usually silver) on the opposite faces of a thin disc or plate of 
ceramic material such as silicate of magnesia or talc. 

 
5. electrolytic capacitors: consist of two aluminium foils one with an 

oxide lm and another without, and interleaved with a material such 
as paper saturated with suitable electrolyte, e.g. ammonium borate. 
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Example 6: A parallel plate capacitor whose capacitance C0 = 13:5 pF has 

a potential di erecne V = 12:5 V between it’s plates. The charging battery 

is now disconnected and a porcelain slab (ke = 6:5) is slipped between 
the plates. What is the stored energy of the unit, both before and after 
the slab is introduced? 

 

The initial stored energy is,  

Ui  = 
1

C0V 2  = 
1

(13:5 10 12 F)(12:5V )2  = 1:055 10 9 J = 1055 pJ : 
 

2 2 

 

q2 
U

f  
=  

C 
 

because, from the conditions of the problem statement, the charge q 
remains constant as the slab is introduced. After the slab is in place, the 

capacitance increases to keC0, so that, 

  q2 Ui  1055 pJ 
 

Uf = 
 

= 
 

= 
 

= 162 pJ 
 

2keC0 ke 6:5  

     
  

The energy after the slab is introduced is smaller by a factor of  1 .  The  
ke 

missing energy, in principle, would be apparent to the person who 
introduced the slab. The capacitor would exert a force on the slab, and 
would do work on it, given by, 

 

W = Ui Uf  = 1055 162 = 893 pJ 

 

If the slab were introduced with no restriction, and if there were no friction, 

the slab would oscillate back and forth between the plates. The system 

consisting of capacitor and slab has a constant energy of 1055 pJ. The 

energy is converted repeatedly between kinetic energy of the moving slab 

and stored energy of the electric eld.At the instant the oscillating slab lled 

the space between the plates, it’s kinetic energy would be 893 pJ. 
 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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Chapter 2 

 
 

R-C Circuits 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 4.  
Outline 

 

Series and parallel arrangement of capacitors and 

resistors charging and discharging a capacitor through a 

resistor R-C circuits 

 
Series and parallel arrangement of capacitors: Consider the arrange-
ment of capacitors in Figure 2.1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Arrangement of capacitors in (a) parallel and (b) series. 
 

 

For the parallel arrangement of the capacitors in (a), q1 = C1V and q2 = 

C2V , so that the total charge is, 
 

q = q1 + q2  = CV 

 

CV  = C1V + C2V 

 

so that the total or e ective capacitance is, 
 

C=C1+C2 (2.1) 

 

or in general for parallel arrangement of n number of capacitors, the e 
ective capacitance is given by a summation of all the capacitances, 

 
n  
Xi  

C =Ci : (2.2) 
=1  
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For the series arrangement of the capacitors in (b), V1 = q and V2 =  q , so  

C1 
  

that the voltage is,              C2 
 

                 
 

V =V1+V2 = 

  q      
 

          
 

 C      
 

 q =  q +  q           
 

     

C
2 

      

C  
C

1       
 

so that the total or e ective capacitance is,           
 

 1  
= 

1  
+ 

1     
(2.3)    

C C1 C2 
  

 

           
 

 

or in general for series arrangement of n number of capacitors, the e 
ective capacitance is given by a summation of all the capacitances, 

 

1  n 1   
 

   Xi  
 

  =   : (2.4) 
 

C =1 
C

i  
 

      
 

 

Example 1: Three capacitors C1 = 12 F, C2 = 5:3 F and C3 = 4:5 F are 
connected as illustrated below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Find the equivalent capacitance. A potential di erence of 12.5V is applied 

to the terminals a,b. Calculate the charge on the capacitor C1. 
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The capacitors C1 and C2 are in parallel, so that their equivalent 
capacitance is, 

 

C12=C1+C2=12 F+5:3 F=17:3 F 
 

The capacitance C12 is in series with C3, hence the equivalent capacitance is, 
 

1 =  1 + 1 =   1  + 1  = 0:28( F) 1  

           

 C  
C

12 C3 17:3  4:5  
 

so that,                
 

     

C = 

 1  

= 3:57 F: 
 

      
 

     0:28 
  

The total charge on the circuit is, 
 

q = C V  = (3:57  F)(12:5 V ) = 44:6  C 
 

so that the voltate on the equivalent capacitance C12 is, 
 

q 44:6  C 

V
12  

=
 C12  

= 17:3  F = 2:68 V
 

 

The same potential di erence appears on the capacitor C1, hence the 
charge is, 

 

q1  = C1 V1  = (12  F)(2:68 V) = 31  C : 
 

 

Resistors: Resistors are passive devices that provide electrical 
resistance to the ow of charges or current in electrical ciruits. The 
following are two broad categories of resistors. 

 

1. linear resistors: also re erred to as ohmic conductors1, the current 
through the resistor is directly proportional to the potential di erence 
across it, 

 

V / I : 
 

2. non-linear resistors: the electrical resistance varies, for example 
with temperature, in some semi-conductors or thermistors, 

 

R = a eb=T 
 

where a, b are constants. Some thermistors are prepared by 
embedding oxides of Mn, Fe, etc in ceramic binders and heating to 
high tempera-tures.  

 
1 they obey Ohm’s law
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Series and parallel arrangement of resistors: Consider the arrangement 
of resistors on Figure 2.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2: Arrangement of resistors in (a) parallel and (b) series. 
 

 

For the parallel arrangement of the resistors in (a), currents I1 and I2 ow 

through resistors R1 and R2 such that the total current is, 
 

I=I1+I2 

 

Since the potential di erence across the resistors has the same value V,  

V=V +V: 
 

R R1 R2 
 

The total or e ective resistance is, 
 

1 
= 

 1 
+ 

1 
(2.5)  

R 
R

1 
R

2 

 

   
 

or in general for parallel arrangement of n number of resistors, the e 
ective resistance is given by, 

1  n 1   
 

  X
i  

 

 =   : (2.6) 
 

R =1 Ri  
 

     
 

 

For the series arrangement of the resistors in (b), the total potential di 
erence V is distributed in the resistors as follows, 

 

V =V1+V2 
 

Since the current through the circuit has the same value I, 
 

IR = IR1 + IR2: 
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The total or e ective resistance is, 
 

R=R1+R2 (2.7) 

 

or in general for series arrangement of n number of resistors, the e 
ective resistance is given by a summation of all the resistances, 

 
n  
Xi  

R =Ri : (2.8) 
=1  

 

Example 2: Three coils have resistances R1 = 8 , R2 = 12  and R3 = 15  

respectively. Calculate the equivalent resistance when they are 
connected in series and in parallel. 

 

For the series arrangement, 
 

R = R1 + R2 + R3 = 8+12+15 = 35  
 

For the parallel arrangement,              
 

1 = 1 +  1 + 1 = 1 + 1  + 1  = 0:275( ) 1  
  

R
1 

  

R
3 

         
 

 R   
R

2   8  12  15  
 

hence,                      
 

       

R = 

1    

= 3:64 : 

  
 

            
 

       0:275    
 

 

Charging and discharging a capacitor: Consider an R-C circuit shown on 
Figure 2.3. Assuming that initialy there is no charge in the capacitor. 
When the switch is on position a the capacitor is gets charged.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.3: A simple R-C circuit for charging and discharging a capacitor. 
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In time dt acharge dq (= idt) moves through any cross-section of the 
circuit. The work ("dq) done by the seat of emf (electromotive force) must 

equal the internal energy (= i2Rdt) produced in the resistor during the 
time dt plus the increase dU in the amount of energy stored in the 
capacitor. By conservation of energy, 

q2 

"dq = i2Rdt + d C : 
 
 

Since the capacitance is a constant,    
 

"dq = i2Rdt + q dq (2.9)  
  

 C  
 

 

which can be divided by dt to give, 
 

"
d

d
q

t = i2R + C
q

 
d

d
q

t :  
 

Noting that the current is equivalent to the rate of ow of charge with time, 
that is i = dq=dt, 

" = iR + 
q 

: (2.10)  
C 

 

   
  

This result is in agreement with the loop theorem - which is based on the 
principle of conservation of energy. Staring from point x on the circuit 
and going arround the circuit in a clockwise direction, we experience an 
increase in potential when going through the seat of emf and a decrease 
in emf when going through the resistor and capacitor, 

 

"   iR 
q 

= 0 (2.11)  
C 

 

   
 

 

so that if we make the substitution i = dq=dt, and re-arrange the equation, 
 

dq  =  dt :  
q 

 

RC 
 

"  
 

 

Integrating this result in the case that q = 0 at t = 0 one gets expressions 
for the charge and current at any time t, 

 

q(t) = C" 1 

 

e 

 t 

 (2.12) 

 

 RC 
 

dq "   t   
 

i =  =  e RC  
 (2.13)  

 

R 
  

 dt       
  

and illustrated on Figure 2.4. 
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Figure 2.4: The charge and current when charging a capacitor. Note the 
values used C = 12 F, " = 12V, R = 33k . 

 

 

At t = 0 the current through the circuit has a maximum value, 
 

i = R
"

 
 
 

and then it decreases to zero, when the capacitor is fully charged, 
 

q ’ C" : 
 

Initially there is no charge on the capacitor, hence zero potential di erence 

across it, and the current has a maximum value, hence a maximum potential di 

erence across the resistor. With time, the potential across the capacitor 

increases while that of the resistor decreases as illustrated on Figure 2.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.5: The voltage across capacitor and resistor when charging a 
capac-itor. Note the values used C = 12 F, " = 12V, R = 33k . 
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For the charging of a capacitor, the potential di erence across the 
capacitor and resistor may be summarised as follows. 

 

at t = 0   VR = "   VC = 0, 
 

as t ! 1 VR ! 0 VC ! ", and, 
 

at all times VR + VC = ". 
 

The quantity RC has the dimensions of time and is called the capacitive 
time constant of the circuit, 

C=RC: (2.14) 
 

It is the time at which the charge on the capacitor has increased to a 

factor of (1 e 1 ’)63% of it’s nal value, that is, 

q = C" 1 e 1 ’ 0:63 C" : 

 

Assume now that the switch s has been in position a for a time that is 
much greater than RC. For all practical purposes, the capacitor is now 
fully charged and no current ows in the circuit. The switch is then thrown 
to position b so that the capacitor discharges through the resistor. There 
is no emf in the circuit, hence, 

iR + 
q 

= 0 (2.15)  
c 

 

   
 

or, 
 

R
d

d
q

t + 
q

c = 0 
 
 

which can be re-arranged as follows, 
 

 dq  
= 

 dt   
 

 

q 
 

RC 
 

 

    
 

whose solution is,      
 

q(t) = q0 e t=RC (2.16) 
 

with q0 = "C being the initial charge on the capacitor. The capacitive time 
constant RC appears in the expression for discharging a capacitor as 
well as in that for charging a capacitor. At a time t = RC the capacitor 

charge is reduced to about 37% of the initial charge (q0e 1). 
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The current during discharge is, 
 

i = 
dq 

= 
 q0 e t=RC (2.17)  

dt RC 
 

    
 

 

with the negative sign indicating that the current is in the opposite 

direction, since the capacitor is discharging. Using q0 = C", 

i = " e t=RC 
 

 
 

 R 
 

at t = 0, the initial current is,   
  

" 

i
0  

=
 R 

:
 

  

as illustrated on Figure 2.6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.6: The charge and current when discharging a capacitor. Note 
the values used C = 12 F, " = 12V, R = 33k . 

 

 

Initially there is maximum charge on the capacitor, hence maximum 

poten-tial di erence across it, and the current has a maximum value in 

opposite direction, hence a maximum negative potential di erence across 

the resistor. With time, the potential across the capacitor dereases while 

that of the resis-tor increases as illustrated on Figure 2.7. Note that the 
potential di erence across the capacitor falls exponentially from it’s 

maximum value, which oc-curs at the time t = 0, where as the potential 

across the resistor is negative and rises exponentially to zero. 
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Figure 2.7: The voltage across capacitor and resistor when discharging a 
capacitor. Note the values used C = 12 F, " = 12V, R = 33k . 

 

 

For the discharging of a capacitor, the potential di erence across the 
capac-itor and resistor may be summarised as follows. 

 

at t = 0 VR = " VC = ", 
 

as t ! 1 VR ! 0 VC ! 0, and, 
 

at all times VR + VC = 0. 
 

Example 3: A resistor (R = 6.2 M ) and a capacitor (C = 2.4 F) are 
connected in series with a 12 V battery of negligible internal resistance. 

 

(a) Calculate the capacitive time constant of the circuit. 

 

The capacitive time constant of the circuit is, 
 

C  = RC (6:2 106  )(2:4 10  6 F) = 15 s : 
 

(b) At what time after the battery is connected does the potential di 
erence across the capacitor equal 5.6 V? 

 

The volatage across the capacitor is given by, 

VC  = " 1 e t=RC 

 

which can be rearranged to calculate the time, 
t =    C ln 1 "C =   (15s) ln 1 12   = 9:4 s : 
  V   5:6   
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Example 4: Consider a capacitor C that discharges through a resistor R. 

 

(a) After how many time constants does it’s charge fall to half it’s initial 
value? 

 
(b) After how many time constants does the stored energy drop to half 
it’s initial value? 

 

At any time t the charge on the capacitor is given by, 
 

q = q0 e t=RC
 

 

where q0 is the initial charge. The time at which q = q0=2 is determined 
as follows, 

 
1 q0  = q0 e t=RC 

 
2  

which can be re-arranged, 
 

t = (ln 2)RC = 0:69RC = 0:69 C 
 

the charge drops to half it’s initial value after 0.69 time constants. 

 

(b) The energy of the capacitor is, 

 q2
    q2

    
 

U =  = 0 
e

2t=
 C = U0 e

2t=
 C  

 

2C 
 

2C       
 

in which U0 is the initial stored energy. The time at which U = U0=2 is 
 

determined as follows,         
 

   1 
U0  = U0 e2t= C 

 

  2  

        
 

which can be re-arranged,         
 

     ln 2  
 

t =  C 

  

= 0:35 C 

 

2  
  

the stored energy drops to half it’s initial value after 0.35 time constants 
have elapsed, that is faster than the loss of charge stored. 

 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 5.  
Outline 

 

the electromotive force 
 

D-C circuits, Kirchho ’s laws 

 

The electromotive force: An energy source is required by most electrical 

circuits to move charges throughout the circuit. Devices that provide this 
energy are called sources of electromotive force or e.m.f.. Examples of 
sources of e.m.f. include ordinary battery, electric generator, solar cells 
etc. Figure 2.8 shows a seat of e.m.f. ", considered to be a battery, 
connected to a resistor R.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.8: The seat of electromotive force (e.m.f.). A positive charge 
carrier would be driven in the direction shown by the arrows marked with 
i, a clockwise current is set up in the circuit. The actual direction of 
electrons in the opposite direction. 

 
 

 

When a steady current has been established in the circuit, a charge dq passes 

through any cross section of the circuit in time dt. This charge enters the seat of 

e.m.f. " at it’s low potential end and leaves at it’s high potential end. The seat 

must do an amount of work dw on the (positive) charge carriers to force them to 

go to the point of higher potential. The electromotive force (e.m.f.) " of the seat 

is de ned as the work done per unit charge, 
 

" = 
dw 

: (2.18)   

dq 
 

    
 

 

The unit for e.m.f. is the Volt, 1 Volt = 1 Joule=Coulomb . 
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The work done by a seat of e.m.f. on charge carriers in it’s interior must be 

derived from a source of energy within the seat. The energy source may be, 

chemical (batteries), mechanical (generator), thermal, radiant (solar cells) 

etc. A seat of e.m.f. can therefore be described as a device in which some 

other form of energy is changed into electrical energy. The seat of e.m.f. is 

often represented by a symbol comprising two parallel lines, the larger one 

being the positive terminal as illustrated on Figure 2.9.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.9: The seat of electromotive force (e.m.f.) in a simple D-C circuit 
 

 

The work done by the seat of e.m.f. to move a charge dq (= idt) in time dt 
is,  

dw = "dq = " i dt : (2.19) 
 

An amount of energy i2Rdt appears in the resistor as internal energy. 
From the principle of conservation of energy, the work done by the seat 
of e.m.f. must be equal to the internal energy deposited in the resistor, 

 

"dq = " i dt = i2 R dt (2.20) 
 

or, 
 " 

  
 

i = : (2.21)  
R 

 

   
  

If we start at any point in the circuit and go round the circuit in either di-

rection, adding up algebraically the changes in potential that we encounter, 

we must nd the same potential when we return to our starting point, that is, 

 

the algebraic sum of the changes in potential enconuntered in a 
complete traversal of any closed circuit is zero. 

 

This is the statement of Kirchho ’s second rule (law) or simply the loop 

rule2.  
2 formulated in 1845 by Gustav Robert Kirchho
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Starting at point a on the circuit on Figure 2.9 and traverse the circuit in 
clockwise direction, 

 

Va iR + " = Va 

 

iR + " = 0 
 

which is independent of Va and shows that the algebraic sum of the 
potential changes for a complete circuit is zero. 

 

The following are some rules for nding the potential di erences, 
 

1. if a resistor is traversed in the direction of the current, the change in 
potential is iR; and +iR for the opposite direction, 

 
2. if a seat of e.m.f. is traversed in the direction of the e.m.f. (from the 

negative terminal to the positive terminal) the change in potential is 
+" and " in the opposite direction. 

 

Internal resistance in a seat of e.m.f.: Oftenly, seats of e.m.f.have an 
internal resistance which is an inherent part of the device and cannot be 
removed (see Figure 2.10).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.10: A seat of e.m.f. " with internal resistance r connected to a 
resistor R. 

 

 

Applying the loop rule, starting from point b and going in the clockwise 
direction, 

 

vb + "   ir iR = Vb  
 

so that the current is, 
" 

  
 

i = : (2.22) 
 

  

R + r 
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The results show that the internal resistance r reduces the current that 

the e.m.f.can supply to the external circuit. The potential di erence Vab 
between the points a and b is, 

 

Vab  = (Va    Vb)  
 

so that moving from the point b to a,   
 

Vb + iR = Va  
 

hence, 
R 

 
 

Vab  = +iR = " (2.23) 
 

R + r 
   

which represents the potential di erence across the terminals of the seat 

of e.m.f. Note that Vab = " if r = 0 (zero or negligible internal resistance) 

or if R = 1(external circuit is open). 
 

Example 1: Consider two seats of e.m.f.’s "1 and "2 connected in series 
with a resistor R as illustrated in the following circuit.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The e.m.f.’s and the resistors have the following values: 
 

"1 = 2:1V; "2 = 4:4V; r1 = 1:8 ; r2 = 2:3  and R = 5:5  

Calculate the following, 

 

(a) the current through the circuit, 

 

(b) the potential di erence between the points 

 
(i) a and b 

 

(ii) a and c. 
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The two e.m.f.’s are connected so that they oppose each other but "2, because 

it is larger than "1, controls the direction of the current in the circuit, which is 

counter-clockwise. The loop rule, applied clockwise from point a yields. 
 

"2 + i r2 + i R + i r1 + "1 = 0 
 

from which       
 

i = 

"2   "1 

= 

 4:4V   2:1V 

= 0:24 A 

 

     

R + r1 + r2 5:5  + 1:8  + 2:3  
 

 

Starting from point b to point a in counterclockwise 

direction, Vb i r2 + "2 = Va 

 

or 

 

Va Vb = i r2 + "2 = (0:24A)(2:3 ) + 4:4V = 3:8V 
 

Note that this is smaller than the e.m.f "2 (4.4V) due to internal resistance r2 

 

If we try from b to a in clockwise direction. 
 

Vb + iR + ir1 + "1 = Va 
 

or 
 

 

Vb Va = i R + i r1 + "1 = (0:24A)(5:5  + 1:8 ) + 2:1 = 3:8V 

 

we arrive to the same result. 

 

Starting from point c to point a in a clockwise direction, 
 

Vc i r1 + "1 = Va 

 

or 

 

Va Vc = i r1 + "1 = (0:24A)(1:8 ) + 2:1V = 2:5V 
 

This value is larger that the e.m.f "1 (2.1V) due to "2. If "1 was a storage 

battery, it would be charging at the expense of "1. 
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Multi-loop circuits: In practise, electrical and electronic circuits are com-
posed of more than one loop, they are often multi-loop circuits. When 
multi-loop circuits are analysed, it is useful to consider their juctions and 
branches. A juction in a multi-loop circuit is a point in the circuit in which 
three or more wire segment meet as illustrated on Figure 2.11  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.11: A two-loop circuits: Given the e.m.f’s and resistances, one 

would like to nd the three currents i1; i2; and i3 . 
 

 

Note that there are 2 junctions b and d in the circuit. Points a and are not 
junctions because only two wire segments meet at those points. A 
branch is any circuit path that starts on one juction and proceeds along 
the circuit to the next junction. There are three branches in this circuit; 
three paths that connect the junctions b and d, 

 

 

left branch b  a d with current i1 

central branch b d with current i2 

right branch b c  d with current i3 
 

In multi-loop circuit, each branch has it’s own individual current, which 

can be determined through analysis of the circuit. Three current i1; i2 and 

i3 have been shown in the circuit on Figure 2.11. The directions are 
chosen arbitrarily. 
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The three currents carry charge either toward junction d or away from it. 
Charge does not collect at juction because the circuit is in steady-state 
con-dition, charge must be removed from the junction at the same rate 
as that is brought into the juction, that is, 

 

q1 + q3 = q2 
 

and since q = it therefore, 

i1 + i3  = i2 (2.24) 
 

At any junction the sum of currents leaving the juction equals the sum of 
currents entering the junction 

 

This is known as Kirchho ’s rst rule or junction rule. It is simply a state-
ment of the conservation of charge.Therefore in the analysis of electric 
circuits there are two basic techniques (Kirchho ’s rules); 

 

1. conservation of charge - junction rule 
 

2. conservation of energy - loop rule 
 

If the two-loop circuit in Figure 2.11 is traversed in a counter clockwise 
direction starting from b and back to b, the loop rule gives, 

 

"1 i1 R1 + i3 R3 = 0 (2.25) 

The right loop gives (in counter clockwise direction)  

i3 R3 i2 R2 "2 = 0 (2.26)   

The three simultaneous equations which can be solved for i1; i2 
 

i1 = 
"1(R2 + R3)  "2 R3 

 

R1 R2+R2 R3+R1 R3 
 

 
 

i2 = 
"1 R3   "2 (R1 + R3) 

 

R1 R2+R2 R3+R1 R3 
 

 
 

"1 R2 "2 R1 
i3 

=
 R1 R2 + R2 R3 + R1 R3  

 

and i3, 

 

(2.27) 
 

 

(2.28) 
 

 

(2.29) 
 

showing that is in negative or in the opposite direction to that shown. To 

check these results, we can set R3 = 1, 
 

i1  = i2 = 
"1 "2 

andi3  = 0 :  

R1 + R2 
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The loop theorem can also be applied to the large loop consisting of the 
entire circuit a - b - c - d - a 

 

i1 R1 i2 R2 "2 + "1 = 0 
 

but is not an independent equation, it is simply the sum of (2.25) and (2.26). 

 

For multi-loop circuits, the number of independent equations must equal 
the number of branches (or the number of di erent currents). The number 
of independent junction equations is one less than the number of 
junctions. The remaining equations must be loop equations. 

 

Example 2: The gure below shows a circuit whose elements have the 
following values: 

 

"1 = 2:1V "2 = 6:3V R1 = 1:7  R2 = 3:5  
 

Find the currents in the three branches of the circuit, and the potential 
dif-ference between a and b.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The direction of currents are chosen arbitrarily. Applying the junction rule 
at a, 

 

i1 + i2 = i3 (2.30) 
 

starting at point a and traverse the left-hand loop in a counter clockwise 
direction, 

 

i1 R1 "1   i1 R1 + "2 + i2 R2 = 0  

or   

"2 "1 = 2 i1 R1   i2 R2 (2.31) 
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Traversing the right-hand loop in a clockwise direction from point a  

i3 R1   "2 + i3 R1 + "2 + i2 R2 = 0  

2 i3 R1 + i2 R2 = 0 (2.32) 
 

Equations 2.30, 2.31 and 2.32 are three independent simultaneous 

equations involving three variables i1; i2 and i3. The solution of these 
equations leads to 

 

i1 = 
("2  "1)(2 R1 + R2) 

= 0:82A  

      
 

   4 R1(R1 + R2) 
 

i2 = 

 "2 "1  

=   0:40A 

 

 2 (R1 + R2) 
 

i3 = ("2 "1) R2  = 0:42A  

     

4 R1 (R1 + R2) 
 

The result indicate that the directions of i1 and i2 are correct but the 

direction of i3 is opposite to that shown. The potential di erence between 
points a and b, is obtained by traversing the branch a - b 

 

V
a i2 R2   "2 = Vb 

Va Vb = "2 + i2 R2 

 
 

= 6:3V + ( 0:4A)(3:5 ) = 4:9V 
 

Showing that point a is at a higher potential than point b (as expected 
from the battery arrangements) 

 
 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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Chapter 3 

 
 

Electrical Devices 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 6.  
Outline 

 

the mesh current or loop current 

method the Wheatstone bridge 

 

Example 1: Consider the two-loop circuit below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The currents i1, i2 and i3 can be evaluated as follows. Applying Kirchho 
’s junction rule at point b, 

 

i1 + i2   i3 = 0 (3.1) 
 

Applying Kirchho ’s loop rule, to the loop abef from point a traversing 
clockwise round the loop back to a, 

 

V
a   

i
1 (1 )  i3 (3 ) + 4V = Va  

or    

i1 (1 ) + i3 (3 ) = 4V (3.2) 
 

Similarly, traversing the right loop bcde in a clockwise direction about 
point b, 

 

Vb + i2 (2 ) 2 V + i3 (3 ) = Vb 
 

or 

 

i2 (2 ) + i3 (3 ) = 2V (3.3) 
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Solving the three independent equations (3.1), (3.2)and (3.3) one gets. 
 

i1 = 1:27A i2 = 0:36A i3 = 0:91A 

 

Mesh current or loop current method: Consider the two-loop circuit in the 

previous example. The number of unknowns (i1; i2; i3) and the number of 
simultaneous equations can be reduced by assuming loop currents in 
the circuit.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The loop or mesh currents i1 and i2 are assumed to circulate in the loops 

a-b-e-f and b-c-d-e respectively. Applying Kircho ’s voltage Law (loop 
rule) to the loop abef 

 

    i1(1 ) + (i1 + i2)(3 ) = 4V  (3.4) 
 

and to the loop cbde         
 

    i2(2 ) + (i1 + i2)(3 ) = 2V  (3.5) 
 

we have only two unknowns and two equations,    
 

     4 i1 + 3 i2 = 4V   (3.6) 
 

     3 i1 + 5 i2 = 2V   (3.7) 
 

with the solutions,         
 

14    4    10  
 

i1 = 

 

A and i2 = 
 

 

A hence i3  = i1 + i2  = 

 

A : 
 

11 11 11 
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The Wheatstone bridge: Consider the circuit on Figure 3.1 which 
consists of four resistors connected in a bridge network, known as the 
Wheatstone bridge.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.1: The Wheatstone bridge   

Applying the voltage law to mesh or loop abd    

R1 i1 = (i1 i2) Rg + (i1 i3) R3 = 0  (3.8) 

For the loop bcd      

R2 i2 + (i2 i3) R4 + (i2 i1) Rg = 0  (3.9) 

If the network is balanced, the galvanometer current is zero. i.e i1 
i
2 

hence equation 3.8 becomes,      

R1 i1 = (i1 i3) R3 = 0   

or      

(R1 + R3) i1 = R3 i3  (3.10) 

Similarly, equation 3.9 becomes      

R2 i1 = (i1 i3) R4 = 0   

or      

(R2 + R4) i1 = R4 i3  (3.11) 
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dividing equation (3.10) by (3.11)   
 

 Ri + R3 
= 

R3 
 

R2+R4 
R

4 
 

 
 

cross multiplying and simplifying, to obtain,  

R
1=

R
3 

 
R2 R4 

 

which is the condition for balance of the Wheatstone net or bridge. This 
is often used to determine unknown resistances. Figure 3.2 shows a 
simple form of a Wheatstone bridge.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.2: A typical circuit diagram for a Wheatstone bridge using a 1 m 
long slide wire. 

 

 

When the bridge is balanced, i.e. there is no current owing in the gal-

vanometer, the value of an unknown resistance Rx is evaluated as follows, 

Rx  = 

L
1 

R : (3.12)  
L2 

 

   
  

Example 2: A wheatstone bridge is composed of a xed resistor R = 200  
and 1 m slide wire of uniform cross section. Calculate the value of the 
un-known resistance when the bridge balances at the 18 cm mark. 

 

Given L1 = 18 cm and L2 = 100 18 = 82 cm, then, 
 

Rx  = 
L1 

R = 
18  

(200  ) = 43:9  

L2 82 
 

   
 

 
 
 
 
 

 

59 



 
 
 
 

 

The Potentiometer: is a device for measuring an unknown e.m.f "x, by 

comparing it with a known standard e.m.f "s. The basic elements of a po-
tentiometer are shown on Figure 3.3  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Schematic diagram of the Potentiometer 
 

 

The resistor that extends from a to e is a carefully made precision 
resistor with a stiding contact shown at position d. The resistance R is 

the resistance between a and d. The source of standard emf "s is rst 
placed at " and the sliding contact is adjusted until the current is zero as 
noted by the sensitive ammeter A. The potentiometer is then said to be 

balanced, the value of R at balance being Rs. In this balance condition, 
we have, considering loop a-b-c-d-a 

 

"s = io Rs : (3.13) 
 

At the balance condition of the potentiometer, i = 0 hence the internal 
resistnce r of the standard source of e.m.f (or ammeter) has no e ect in 

our calculations. The process is repeated for an unknown e.m.f "x and 
the new balance condition is, 

 

"x = io Rx (3.14) 
 

On dividing equation (3.13) by (3.14) to get an expression for the 
unknown source of e.m.f. 

 

"x = "s 
Rx 

: (3.15)  
 

 

 Rs  
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Therefore, the unknown e.m.f can be determined interms of the known 
e.m.f by making adjustment on the precision resistor. 

 

In it’s simplest form, the potentiometer consists of a wire MN of uniform 
cross-section, stretched alongside a scale and connected across a 
secondary cell B of ample capacity as illustrated on Figure 3.4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.4: Typical circuit diagram of a potentiometer for measuring un-

known e.m.f. The balance lengths are shown as Ls and Lx for the 
standard source of e.m.f. and the unkown e.m.f. respectively. 

 

 

The resistance of a wire is given by     
 

R = 
L 

(3.16)   

A  

 

   
 

where is the resistivity of the wire. Therefore the resistances Rs and Rx 

can be expressed in terms of the balance lengths Ls and Lx as follows, 
 

Rs = 
Ls 

; Rx = 
Lx 

:  
A A 

 

    
  

Equation 3.15 can therefore be written as follows, 
 

"x = "s 
Lx 

(3.17)   

Ls 
 

   
  

showing that the unknown e.m.f can be determined from the balance 
points on the wire of uniform cross-section. 
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Example 3: A standard cell of e.m.f 1.01859V is balanced at 42cm along 
the uniform wire of a potentiometer. Determine the value of an unknown 
e.m.f balanced at 31cm along the wire of the same potentiometer. 

 

Given Es = 1.01859V, ls = 42cm , lx = 31cm. 

 

31 

Ex = 1:01859V 42 = 0:752V 
 
 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 7.  
Outline 

 

the potential divider 

the galvanometer 

 
The Potential divider: is a device used to provide a variable potential dif-

ference from zero to the full supply value Vo of a primary source as 
illustrated on Figure 3.5  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: A typical circuit diagram for a potential divider. 
 

 

In the absence of a load across the terminal a, b, the current I through 
the circuit is given by, 

 

Vo 
I=

 R1+R2   

and therefore 
 

V1=IR1= 

R1 

Vo (3.18) 
 

R1+R2 
  

which is a fraction of the full supply Vo 

 

However, in the presence of a load, the load resistance R3 will be in parallel 

with R1 as illustrated on Figure 3.6. Equation 3.18 will therefore be no 

longer valid and the voltage V1 must be measured with a voltmeter. 
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Figure 3.6: A typical circuit diagram for a potential divider with a load 
resistance. 

 

 

If the load resistance R3 is known then V1 can be calculated as follows, 

 

1 =1+1 
 

R R R
 

Rab =  
R1 

R3
 

 
R1+R3  

therefore 
R

ac 
=

 
R

ab 
+

 
R

bc 
=

 
R

1 
R

3 + R2  

 
 

 R1+R3 
 

so that, 

Vab = 
Rab Vo :  

R
ac 
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Example 1: A load of 2k  is connected via a potential divider of 
resistance 4k  to a 10V supply. Calculate the potential di erence accross 
the load when the slider is one quarter up the divider?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

R  = 2000 1000 = 2000  R  = 3000 + 2000 

 

=  11000 
 

 

2000 + 1000 3 

  

3 3 

 

 ab     ac    
  

Vab = 
Rab Vo = 

2
 10 = 1:8V  

Rac 11 
 

if the load is removed 
 

1000  

V
ab 

=
 4000  

10V
 
= 2:5V

 

Similarly, when the slider is half-way up the divider,  
 
 

Rab = 
2000 2000 = 1000     Rac = 1000  + 2000  = 3000   

 
 

2000 + 2000 
 

  
  

 

1000  

V
ab 

=
 3000  

10V
 
= 3:3V

 

and if the load is removed,   

2000  

V
ab 

=
 4000  

10V = 5V
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Galvanometer: The main components of a moving coil galvanometer are 
a set of permanent magnets enclosing a coil of wire free to turn with an 
at-tached pointer and a scale, as illustrated on Figure 3.7  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.7: A typical moving coil galvanometer 
 
 

 

The principle of operation is as follows. A coil carrying a current in a magnet 
eld experiences a torque which is proportional to the current I i.e 

 

/ I 
! 

For a coil of N turns in a magnetic eld B the torque on the coil is 

 

= N i A B Sin 
 

where, 

 

A is the area of the closed loop of the coil 

 

is angle between the normal perpendicular to the plane of the loop 
and the magnetic eld B, 

 

i is the current through the coil. 

 

A rectangular loop of wire carrying a current i placed in a uniform magnetic 
eld. The unit vector n^ is normal to the plane of the loop, and makes an 

! 
angle with the eld B . A torque acts to rotate the loop about the Z axis 

!  
so that n^ aligns with B This torgue rotates the coil until it is balanced by the 

restoring torque provided by the mechanical suspension of the coil. Since 

the restoring torque of the suspension is proportional to the angle of the coil, 

the equilibrium angle of rotation will be proportional to the current in the 
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coil. 

 

Therefore, the resistance of the galvanometer and the current needed to pro-
duce full-scale de ection are the two parameters important for the construc-tion 

of an ammeter or voltmeter from a galvanometer. Typical values of these 

parameters for a portable pivoted-coil laboratory galvanometer are Rg  

= 20  and Ig = 0.5mA. The voltage drop across a galvanometer with 
these parameters is thus 

 

Ig Rg = 10 2V 
 

for full-scale de ection. 

 

Ammeter: To construct an ammeter from a galvanometer, a small resis-

tance called shunt resistor Rs, is connected in parallel with the 
galvanometer as illustrated on Figure 3.8.  

 
 
 
 
 
 
 

 

Figure 3.8: A typical circuit diagram for the conversion of an 

galvanometer into an ammeter. Note that the total current i = ig + is. 
 

 

The shunt resistor Rs is chosen such that Rs<<Rg so that most current 

ows into the shunt. The e ective resistance of ammeter RA is much 

smaller than Rg (RA<<Rg)  

RA = 
R

s Rg 
 

Rs + Rg 
 

The shunt resistor is in parallel to the galvanometer, hence voltage 
across the shunt is the same as that across the galvanometer, 

 

ig Rg = is Rs  
 

Rs = 
ig 

Rg (3.19)  
is 

 

   
 

Hence an ammeter can be designed using an appropriate shunt 

resistance Rs for particular requirements of measured currents. 
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Example 2: Using a galvanometer with a resistance 20 , for which a 

current of 5 10 4A through it’s coil, gives full-scale de ection, design an 
ammeter which will read full-scale when the current is 5A. 

 

given 

 

Rg = 20  ig = 5  10 4A  i = 5A 
 

    is = i ig ’ 5A   
 

R 

s 

= 5 104A 

 
20 =2 

 
10 3 

 

   5A   
  

i.e Rs<<Rg the resistance of the shunt is much smaller than the of the 

current must ow through the shunt resistor Rs and the e ective resistance of 
the parallel combination is approximately equal to that of the shunt. 

 

R = Rs Rg  = (20  10 3 )(20 )  = 20  10 3  
 

g 
   

R 

s 

+ R 

 

(20  + 20 

 

10 
3 )   

 
 

     
  

 

Voltmeter: A resistor Rs is connected in series to a galvanometer in order 
to construct a voltmeter as illustrated on Figure 3.9  

 
 
 
 
 
 
 
 
 
 

 

Figure 3.9: A typical circuit diagram for the conversion of an galvanometer 

into a voltmeter. Note that the same current ows through the circuit i = ig. 
 

 

The series resistor Rs is chosen such that Rs>>Rg so as to drop the 

current through the galvanometer. Since the resistor is in series with the 
galvanome-ter, 

 

V = Vs + Vg = i(Rs + Rg) 
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the series resistance is given by,    
 

Rs = 

V 

Rg : (3.20) 
 

i 
   

Example 3: Design a voltmeter to measure a maximum of 10V at full-

scale de ection using a galvanometer of resistance Rg = 20  which gives 

full-scale de ection when a current of ig = 0.5mA ows through it’s coil. 

 

Given    

i = ig = 5  10 4A    Rg = 20  

 

then 
V =10V  

 

      
 

R = 

V 

Rg  = = 

 10V 

20  = = 19; 980  ’ 20k 

 

    
 

i 5 104A 
 

A resistor Rs = 20k  connected in series with the galvanometer would 
meet the design requirements. 

 

Ohmmeter: It consists of a source of e.m.f., a galvanometer and a 
resistor connected as illustrated on Figure 3.10.  

 
 
 
 
 
 
 
 
 
 

 

Figure 3.10: A typical circuit diagram for the conversion of an 
galvanometer into an Ohmmeter. 

 
 

The resistance Rs is chosen to give full-scale de ection when the 
terminals a and b are shorted (connected together without any load 
resistance). The full-scale is marked zero-resistance. When the terminals 
are connected across an unknown resistance R, the current is less than 

ig and the galvanometer reads less than full-scale. The current through 
the circuit will depend on the load resistance R, 

 

I = 

" 

: (3.21) 

 

R + Rs + Rg 
   

The galvanometer can be calibrated in terms of the resistance measured, from 

zero at full-scale to in nite resistance at zero de ection. The calibration is 
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non-linear and depends on the constancy of the e.m.f of the battery. 
Hence such an ohmeter is NOT a high-precision instrument, though 
quite useful for making quick, rough determination of resistance. 

 

In any case, some calibration must be excercised in the use of an ohmeter 

since it sends a current through the resistance to be measured. For 

example, consider an ohmeter with a 1.5V battery on a galvanometer. 

Similar to that in the previous examples, the series resistance needed is, 
 

 Ig (Rs + Rg) = 1:5V 
 

Rs = 

1:5 

Rg = 3000  20 = 2980  

 

5 104
 

  
Suppose we were to use the ohmmeter to measure the resistance of a more 

sensitive galavanometer which gives full-scale reading with a current of 10 5A 

and has a resistance of about 20 . When the terminals a and b are placed 

across this more sensitive galvanometer, the current will be just slightly less 

than 5 x 10 4A because the total resistance is 3000 , which is just slightly more 

than 3000 . Such a current, about 50 times that needed tp produce full-scale de 

ection, would ruin the more sensitive galvanometer! Wheatstone bridges 

provide a more accurate method to determine unknown resistances. 

 

Assignment: A moving coil galvanometer gives a full-scale de ection with 
15mA and has a resistance of 5 . Design the following, 

 

i) an ammeter to measure upto 1A, 

 
ii) a voltmeter to measure upto 10V, 

 
 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 8.  
Outline 

 

the cathode - ray oscilloscope and it’s applications 

 

The Cathode Ray Oscilloscope (CRO): The CRO is almost universally 
employed to display the waveforms of alternating voltages and currents 
and has very many applications in electrical testing. The basic form of 
their operation is illustrated on Figure 3.11.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11: A schematic diagram of a CRO. 
 

 

The cathode ray tube is an important component of the CRO. The 
principal features of the cathode ray tube are as follows, 

 

cathode for production of electrons, 
 

control grid with a variable negative bias to control the emission of 
electrons, thereby varying the brilliancy of the spot on the uorescent 
screen, 

 

anode discs maintained at a high potential relative to the cathode, so that 

the electrons passing through the grid are accelerated very rapidly, 
 

plates X and Y for the horizontal and vertical de ection of the 
electron beam, 

 

as illustrated on Figure 3.12. 
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Figure 3.12: A schematic diagram of a cathode - ray tube. 
 

 

The electrons shoot through the small appertures in the anode discs and 

them impact on the uorescent screen to produce a luminous patch or spot. 

This patch can be focussed into a bright spot by varying the potential of the 

focussing elecrode between the anode discs. This varyies the distribution of 

the electrostatic eld in the space between the anode discs. The electrode 

may consist of a metal cylinder or two discs with relatively large appertures. 

The combination of the anode discs and electrode may be regarded as an 

electron lens, and the system of electrodes producing the electron beam is 

termed as electron gun. The glass bulb housing the uorescent screen is 

evacuated to prevent any ionisation. 

 

The electrons after emerging through the anode discs pass between two 

pairs of parrallel plates, termed the X- and Y- plates. One plate of each 

pair is usually connected to anode and the other is kept at ground 

potential. Sup-pose a d.c supply is supplied across the Y-plates. The 

eletrons constituting the beam will be attracted towards the positive plate 

and the beam will be de ected upwards. If the alternating voltage is 

applied across the Y-plates, the beam would therefore trace a vertical 

line on the screen. Similarly an alternating voltage applied to the X-plates 

would cause the beam to trace a horizontal line. The time-base serves to 

move the beam across the screen of the tube- achieved by the X-plates. 
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The power supply serves the following; 
 

the grid and anode systems, 
 

brilliance, focus and astigmatism controls, 

and also to amplify the control system. 

 
The electronic circuitry of the oscillope (details are beyond the scope of this 

course) are capable of handling a very wide range of input signals varying 

from a few millivolts to possibly a few hundred volts, while the input signal 

frequncy may vary from zero (d.c) upto possibly 1GHz, although an upper 

unit of 10-50MHZ is more common in general purpose instruments. 

 

Measurement of voltage: An unknown a.c voltage is applied to the Y-

plates of the CRO. If the time base is switched o , then a vertical trace is 

observed on the screen of the oscilloscope. The size of the vertical line 

trace is equivalent to the twice the amplitude or voltage of the unknown 

input signal. If the CRO is calibrated using known voltages then the 

value of an unknown voltage may be determined. If the time-base is 

switched on then the waveform of the signal may be displayed on the 

CRO screen as illustrated on Figure 3.13  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.13: Traces of a signal on a CRO with the time base switched (a) 
o and (b) on. 
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Measurement of frequency: If a calibrated time-base is available, fre-
quency measurements can be made. For example the trace of a square-
wave input signal is displayed on a CRO as illustrated on Figure 3.14  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.14: A typical square wave signal measured on a CRO. 
 

 

The signal amplitude control is set to 0.5V/cm and the time-base control 
to 100 s/cm. The peak to peak voltage and frequency of the signal can 
be determined as follows, 

 

Height of the display is 4.6cm 

 

therefore, peak - to - peak voltage = 4.6cm 0:5V/cm = 2.3V 

 

Width of a complete signal is 7cm 

 

therefore, period of the signal = 7cm 100 10 6s/cm = 700 x 10 6s 

 

Therefore, frequency of signal = 

1 

= 1430Hz 

 

700  10 6s 
 

 

Measurement of phase: Consider two input signals of the same frequency 
one connected to the X-plates and the other to the Y-plates. An ellipse will 
be seen on the screen as shown on Figure 3.15. The trace is centred and 

the peak vertical displacements of the ellipse y1 and y2 are measured. 
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Figure 3.15: Measurement of phase on a CRO. 
 

 

Suppose the displacements in x and y are given by 

 

x = a sin !t y = y1 sin(!t +  ) 
 

where a and y1 are the amplitudes in the x and y directions respectively, 
is the phase angle. When x =0, 

 

sin ! t = 0 and y = y2 = y1 sin 
 

hence, 
y2

 

sin =  
 

from which can be determined. 

 

The patterns formed when two sine waves or sinuisoidal signals are applied 
simultaneously to the vertical and horizontal de ecting plates of the CRO (Y- 

and X- plate) are known as Lissajous
1
 gures. The shape of the pattern 

depends on the frequency and phase relationship of the two sine waves, in 
addition to their respective amplitudes. Lissajous gures are used for; 

 

determine an unknown frequency by comparing it with a known fre-
quency, 

 

check audio oscillators with a known frequency signal, and, 

check audio ampli ers and feedback networks for phase shift. 
 
 
 
 
 

 
1named in honour of the french scientist who rst obtained them geometrically 
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When an unknown waveform is applied to the Y-input and a known 
waveform to the X-input, the frequency of the known waveform is 
adjusted until an exact relationship is achieved between the two 
frequencies as illustrated on Figure 3.16. If a vertical and a horizontal line 
are imagined as being drawn at the side and top of the trace then 

 

fx = no: of loops touching verical line 
 

   

fy no of loops touching horizontal line 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.16: The use of Lissajous gures to measure the frequency of a 
signal on a CRO. 

 
 
 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 9.  
Outline 

 

resistivity and conductivity 
 

ohmic and non-ohmic conductors 

 

Resistivity and Conductivity: Di erent materials o er di erent levels or 
magnitudes of resistance to the ow of electrical charges or electrical 
current i.e they have di erent resistance values. If a potential di erence V 
is ap-plied between 2 points of the conductor and a current i ows across 
it, the resistance R of the material is 

 

R = 
V 

(3.22)   

i  
 

    
 

1 Ohm = 
  1 volt   

 

  

ampere 
 

 

     
 

The resistivity of the material of the conductor is de ned as  
 

= 
E    

:m (3.23)  
j 

   
 

       
 

where       
 

E (V/m) is the electric  eld strength applied.  
 

j(A/m2) is the electric current density.  
 

In vector form       
 

~  ~  
(3.24) 

 

E =  j 
  

Equations 3.23 and 3.24 are valid for isotropic materials, whose electrical 
properties are same in all directions. Resistivities of some materials at 

room temperature (20oc) is shown on Table 3.1 
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Table 3.1: Resistivity of some materials at room temperature (20oc) 

   Material Resistivity temperature coe  cient of resistivity 
 

       ( :m)  (peroc) 
 

   typical metals         
 

   Silver 1.62 x 10 8 4.1 x 10 3 
 

   Copper 1.69 x 10 8 4.3 x 10 3 
 

   Aluminium 2.75 x 10 8 4.4 x 10 3 
 

   Tungsten 5.25 x 10 8 4.5 x 10 3 
 

   Iron 9.68 x 10 8 6.5 x 10 3 
 

   Platinum 10.6 x 10 8 3.9 x 10 3 
 

   Manganin 48.2 x 10 8 0.002 x 10 3 
 

typical semiconductors        
 

   Silicon(pure)  2.5 x 103
 -70 x 10 3 

 

   Silicon n-type 8.7 x 10 4   
 

   Silicon p-type 2.8 x 10 3   
 

 typical Insulators        
 

   Glass  1010 - 1014   
 

   Polystyrene >1014
    

 

   Fused quartz ’ 106
    

 

The conductivity  of a material is the reciprocal of it’s resistivity, i.e 
 

       
= 

1   
( :m) 1 

 
 

             

       
 

  
 

           
 

so that Equation 3.24 can be written as  
 

        ~  ~ 

(3.25) 
 

         j =  E 
  

Consider a cylindrical conductor, of uniform cross-sectional area A and 
length L carrying a steady current i with a potential di erence V between 
it’s ends. If the cylinder cross-sections at each end are equipotential 
surfaces, the elec-tric eld and the current density are constants for all 
points in the cylinder and have the values, 

 

E = 
V      

 and    j = 
 i  

 

L A 
 

      
 

The resistivity  is             
 

 
E 

    V   
V 
    

 

=  =  L  but = R  

  

i 
 

  
 

 j      i    
 

    A      
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hence 

R = 
L 

(3.26)  
A 

 

  
  

Equation 3.26 applies only to a homogeneous, isotropic conductor of 
uniform cross-section subject to a uniform electric eld. 

 

Example 1: A rectangular block of iron has dimensions 1.2cm 1.2cm 

15cm. The resistivity of the iron at room temperature is 9.68 x 10 8 :m: 
 

The resistance of the block measured between the two square ends is, 
 

R = 

L 

= 9:68  10 
8 

:m 

 0:15m 
 

     

A  (1:2 
 

10 2m)2 
 

       
  

= 100:83 
 

The resistance between the two opposing square faces, 
 

R = 
L 

= 9:68 

 

10 8 :m 

(1:2 

1:2  10 2m 
 

A 10 2m  15  10 2m) 

 

    
 

     = 0:65  
  

 
 

Ohms Law: George Simon Ohm (1781 - 1854) investigated how the 
current I in a given metal varied with the p.d V across it. An experimental 
set-up for this investigation is illustrated on Figure 3.17.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.17: Circuit diagram for the investigation of the current and 
voltage in conductors 
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The variable resistor or rheostat provides a varying current through the 
cir-cuit and the potential di erence across the resistor R is measured at 
these di erent currents. Ohm observed that the potential di erence across 
a resis-tor R is proportional to the current through it; i.e 

 

V / I 
 

known as Ohm’s Law, which states, 

 

under constant physical conditions, the resistance V/I is a constant 
indepen-dent of V or I 

 

and holds for many conductors. 

 

Ohmic and non-Ohmic conductors: Ohm’s Law is obeyed by metals, also 

called Ohmic conductors. In this type of conductors the direction of 

current is reversed when the p.d V is reversed. The characteristic or I-V 

graph is thus a straight line passing through the origin Non-Ohmic 

conduc-tors are those which do not obey Ohm’s Law (V / I). Their I-V 

graphs may have a curve instead of a straight line, or it may not pass 

through the origin as in the ohmic characteristic; or it may conduct poorly 

or not at all when the p.d is reversed (-V) 

 

Example 2: Calculate =A for a 14-gauge copper wire and hence determine 
the electric eld strength in a 14-gauge copper wire carrying a current of 1A. 

The diameter of a 14-gauge copper wire is 0.163cm and = 1.7 x 10 
8
 :m 

 
 

A = 4
d2 = 4 (0:163  10 2

m)
2 = 2:09  10 6

m
2

 
  

thus 
 

  = 1:7  10 8 :m = 8:146 
 

10  
A 

 

6m2 
 

 2:09 
 

10   
 

         
  

Hence for a 1m long 14-gauge wire R = 8.146 x 
10 when carrying 1A is 

 

 
3 

 
3 

 

 

=m 

 

and the voltage drop 

 
 

V =IR=1A 8:146 10 3 =8:15 10 3V and the 

electric eld strength 
 

E = 
V 

= 
8:15  10 3V 

= 8:15 
 

10 
3 V  

 

 

L 1m 
 

m  
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Example 3: A wire of length 1m has a resistance of 0.3 . It is uniformly 
stretched to a length of 2m. What is it’s new resistance? 

 

The resistivity of the material does not change when the wire is stretched.  

= 
R

1 
:A

1 = 
R

2 
:A

2 

l1l2   

Given R1 = 0.3 , l1 = 1m , l2 = 2m = 2l1. Let the diameter of the wire be d 
so that 

 

A1 = 
  

 d1
2 

     
   A2 =  

 
d2

2 
 

4 
     4  

                           
 

Since the volume of the wire does not change         
 

   2        2          
 

        

d2 
l
2 = 

 

  

d1 
l
1 

     

     4 4     
 

2          2 
l
1  2 

l
1      d1

2 
 

d2 = d1 

  

   

= d1 

  

  

= 

    

l2 2 l1 2  
 

Then                                  
 

      
R

2 
A

2 
= 

 
R

1 
A

1     
 

          

l2 
       

l1 
        

 

                          
 

 
 R2 

 
d2

2 
  

R1  
 
 d1

2
 
    

 

 4 = 
 4     

 

       

2 l1 
        

l1 
        

 

                        
 

hence                                  
 

      
 R2 

d1
2   
  R1 d2

 
    

 

      2       
 

               

= 
    1        

 

   2     1            
 

                   
 

 

R2=4R1=4 0:3 =1:2  
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Example 4: A 16-gauge copper wire (diameter = 1.29mm) can safely 
carry a maximum current 6A (assuming rubber insulation) 

 

a) What is the maximum potential di erence that can be safely 
applied accross 40m of such a wire. 

 

b) Find the current density and electric  eld in the wire which it carries  
6A. 

 

c) Evaluate the power dissipated in the wire when it carries 6A. 

copper = 1.7 x 10 8  m 
 
 

R = 
l 

=1:7 108
 

   40m 
 

      
 

A  
 (1:2 

 

10 3m)2  

   

  4   
 

  = 0:52       
 

 

Vmax = imax R = 6A 0:52  = 3:12V 

The current density 
 

j = 
I 

= 
   6A 

= 4:59  106A=m2
 

 

      
 

A 
  

(1:29 
 

10 3m)2 
 

 

4 
 

     
 

The electric eld 
 

E = 
V 

= 
3:12V 

= 0:078 V =m  

l 
 

40m 
 

    
  

The power dissipated 

 

p = V I = 3:12V 6A = 18:72 W 
 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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Chapter 4 

 
 

The Magnetic Field 
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SPH101 Electricity and Magnetism I 

 

Lecture No. 10.  
Outline 

 

the magnetic  eld 
 

The magnetic eld: The space around a permanent magnet or a current- 
~ 

carrying conductor is described as the location of a magnetic  eld H. The ~  
magnetic ux density is denoted by B (although in many cases it is also ref-

ered to as magnetic eld). Figure 4.1 shows iron llings sprinkled on a sheet 

of paper covering a bar magnet. The distribution of the llings indicates the 

pattern of lines of the magnetic eld. Similarly, a radial pattern of magnetic 

eld lines will be set up by a current-carrying conductor. The moving electric 

charge or an electric current sets up a magnetic eld, which can then exert a 

magnetic force on other moving charges or currents.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1: Lines of the magnetic eld displayed using iron lings. 
 

 

The magnetic force on a moving charge: Consider the projection of 
    ~ 

 

a test charge q through a point p with a velocity V as illustrated on Fiure 
 

    ~ 
 

4.2. The direction of projection is at an angle   with the magnetic  eld B. 
 

   ~  
 

The test charge experiences a magnetic force F which is perpendicular to the 
 

~ ~    
 

plane of B and V , whose magnitude is   
 

 F = q V B sin (4.1) 
 

which can be written in vector form as   
 

 ~ ~ ~ 

(4.2) 
 

 F = q V B 
 

so that Fmax = qvB when = 900 and Fmin = 0 when = 0 or 180
0
. 
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Figure 4.2: Motion of a test charge magnetic eld. 
 

 

The SI unit for the magnetic eld is the tesla (T) 
 

1 tesla = 

1 newton 

= 

 1 newton 
 

 

 

    

coulomb meter=second  ampere  meter 
 

An earlier (non SI) unit for was the gauss     
 

 1 tesla = 104gauss :    
 

Table 4.1: Typical values of some magnetic  elds 
 

Location 
 ~ 

 

 Magnetic  eld B(T ) 
 

At the surface of a neutron star (calculated)  108
  

  
Near a super conducting magnet 5 

Near a large electromagnet 1 

Near a small bar magnet 10 

At the surface of the earth 10 

In the interstellar space 10 

In a magnetically shielded room 10  

 
 

 
2 
 
4 
 
10 
 
14 
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Magnetic eld lines: Magnetic eld lines are lines of magnetic force orig-
inating from one end (North pole) of a magnet and ending at the opposite 
end (South pole) of the magnet as illustrated on Figure 4.3  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.3: The magnetic eld lines for a bar magnet. 
 

 

The magnetic eld lines form closed loops leaving the magnet at it’s north 

pole and entering it at it’s south pole. Studies on the properties of magnets 

conducted several centuries ago showed that like poles repel and unlike 

pole attract. It is interesting to note that magnet that is freely suspended 

would always align itself in the direction of the external eld. A magnetic 

compass always point to the geographic north. Thus there exists a magnetic 

eld due to the earth with the Antarctica and Arctic regions being the north 

and south poles respectively as illustrated on Figure 4.4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.4: The Earth’s magnetic eld. Note that the geographic north 
corresponds to the magnetic south pole. 
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The following are di erent types of magnetic materials. 

 

Paramagnetic - have permanent magnetic dipole moments which 
do not interact strongly with each other and are normally randomly 
ori-ented. In the presence of an external magnetic eld, the dipoles 
are partially aligned in the direction of the external eld, thereby 
increas-ing the eld. 

 

 

Ferromagnetic - have strong interaction between neighbouring 
mag-netic dipoles and a high degree of alignment is achieved with 
weak external magnetic elds thereby causing a very large increase 
in the total eld. Even when there is no external magnetic eld, 
ferromag-netic materials may have magnetic dipoles aligned like in 
permanent magnets. 

 

Diamagnetic - result from induced magnetic moment opposite in di-
rection to the external eld. The induced dipoles thus weaken the 
resultant magnetic elds. 

 

A soft iron core is an example of a ferromagnetic material and can 
therefore be magnetised when aligned to the earth’s magnetic eld. 

 

~ 

Example 1: A uniform magnetic eld B with magnitude 1.2mT, points ver-
tically upwards throughout the volume of the room in which you are 
sitting. A 5.3MeV proton moves horizontally from south to north through a 
certain point in the room. What magnetic de ecting force acts on the 

proton as it passes through this point? The proton mass is 1.6 x 10 27kg. 
 

The speed of the proton is calculated from k = 12 mV 2 

 

 
r     s 1:67  10 27kg  

 m 
 

V = 
 2k 

= 
 2 (5:3 Mev)(1:6 10 13J=MeV) 

 

     
  

 

= 3:2 107m=s 
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The force on the proton is calculated as follows, 

 

F = q V B sin 

 

= (1:6  10 19C) (3:2  107m=s) (1:2  10 3T) sin 900 

 

= 6:1  10 15N 
 

so that the acceleration is, 

a = 
F

 = 
6:1

 
10 15N  

= 3:7  1012 m=s2 
 

m 1:67 10 27kg 

 
 

Lorentz Force: Consider the motion of a charged particle passing through 
~ ~ 

a region in which the E and B elds are perpendicular to each other and 
to the velocity of the particle as illustrated on Figure 4.5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5: The motion of a charged particle in uniform electric magnetic 
elds. The magnetic eld is indicated to be through the paper. 

 
 

 ~   ~ 
 

In the presence of both electric  eld E and a magnetic  eld B, the total force 
 

on the charged particle can be expressed as   
 

~ ~ ~ ~ 

(4.3) 

 

F = q E + q V B 
 

known as Lorentz force. 
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The electric and magnetic elds can be adjusted until the magnitudes of the 
forces are equal, in which case the Lorentz force is zero. In scalar terms 

 

qE = q V Bor    V = 
E 

 

B 
 

 
  

Only particles with this speed will pass through the region unde ected, oth-
ers will be de ected. This value is independent of the change or mass or the 

~ ~ 

particles. The crossed E and B elds can therefore serve as a velocity 
selec-tor; only particles with speed V = E/B pass through the region unde 
ected by the two elds, while particles with other velocities are de ected. 

 

Assignment: Show how Sir J.J. Thompson applied this technique to 
deter-mine the charge-to-mass ratio of the electron. 

 

Motion of a particle in a magnetic eld: In the special case when the 
velocity of the particle is perpendicular to a uniform eld the particle 
moves in a circular circuit, 

 

q V B = 
mV 2  

or r = 
mV  

 

r qB 
 

       
 

The angular frequency of the circular motion is 
 

 
! = 

V 
=  

qB   
(4.4)   

r m 
 

         
 

known as the cyclotron frequency. The periodic time is , 
 

T = 2  = 2  m  (4.5)  
   

!    q B    
  

Some of the many interesting applications of the circular motion of 
charged particles in a uniform magnetic eld are 

 

Mass spectrograph - identi cation of radoisotopes 

 

Cyclotron - acceleration of particles to cause nuclear reaction for basic 
research and isotope production for medical/industrial applications 

 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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SPH101 Electricity and Magnetism I 
 

Lecture No. 11.  
Outline 

 

Ampere’s Law 

Self inductance 

 
Amperes Law: As already observed, the motion of charged particles or the 
ow of electric current creates a magnetic eld as illustrated on Figure 4.6.  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.6: A closed loop for the calculation of the magnetic eld 
 

 

The magnetic  eld due to a current i can be calculated as follows,  
 

I  
 

~   ~ 

(4.6) 

 

B : dS =  o i 
  

which is a line integral of a closed path or Amperian loop of the current. 
For any closed loop, the integrated magnetic eld around the loop is 
propor-tional to the electric current in the loop creating the magnetic eld. 

This is known as Ampere’s law1. The constant of proportionality o is 
known as the permeability constant. 

 

Example 1: Consider a long straight wire carrying a current i through a 
plane of paper as illustrated on Figure 4.7.  

 
 
 
 
 
 
 
 

 
1 discovered by Andre-Marie Ampere in 1826
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Figure 4.7: The magnetic eld due to a current-carrying conductor 

 

~ 

A circular Amperian loop is used to de ne the eld set up by the B has 
only tangential component hence = 0 

 

I I  
B dS Cos  = B dS = B 2 r 

 

B 2  r = o i 

 

B =  o 
i
 2  
r   

Energy Density and the magnetic eld: The energy density in a uniform 
magnetic eld is given by 

 

B =  1 B2
 (4.7)  

  
 

 2  o  
 

~ 

which can be derived by considering the magnetic eld B in a solenoid of 
cross-section A and length l and inductance L. 

 

B = 
UB but UB =  1 L i2  

A l 
 

 

  2 
 

hence 

1 L i2 

B 
=

 
2  

A l 
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but 
 

L = o n
2 l A 

 

B = o i n 

 

i = 

 
 

B   

o n 

so, 
1 ( o n2 l A) B2 

B
 
=

 
2

  A l ( 2o n2) 

  

B =  1 B2
 (4.8)  

   

 2  o  
 

Example 2:Compare the energy required to set-up in a cube of 10cm on edge 
 

~ 5 
a) a uniform E = 1.0 x 10 V/m and 

 

~ 

b) a uniform B = 1.0T. 

 

the permeability costant is given as 
 

o = 4 10 7T:m=A = 1:26 10 6H=m 

 

UE = E Vo = 
1

2 E2 Vo 
 

 

= (0:5)(8:9 10 12c2=N:m2)(105V =m 0:1m3) 

4:5 10 5J 

 

   UB =  B Vo 
 

 B2  (1:0T )2(0:1m)3 
 

= 

 

Vo = 

   

= 400J 

 

2  o 2(4   10 7T:m=A) 
 

   B 
 

   

) 
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   E 
  

more energy can be strored in a magnetic eld. 
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Solenoids: A solenoid is a long wire wound in a close-packed helix 
carrying a current i as illustrated on Figure 4.8. The helix is very long 
compared to its diameter so as to have uniform magnetic eld lines.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: The magnetic eld lines in a solenoid. 
 
 
 

The solenoid eld is a vector sum of the elds set-up by all the turns that 
make up the solenoid. In the limiting case of tightly packed square wires, 

~ 

the solenoid becomes essentially a current sheet and the eld B at 
outside points approaches zero as the solenoid approaches an in nitely 
long cylindri-cal current sheet as illustrated on Figure 4.9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.9: Calculation of the magnetic eld in a solenoid 
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An Amperian loop (rectangle abcd) can be used to calculate the 
magnetic eld of this long idealised solenoid 

 
 

I Z b Z c Z d Z a 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
B:dS = B:dS + B:dS + B:dS + B:dS  

a b c d 

 

= B h(+0 + 0 + 0) 
 

for n turns in the section of length h 
 

i = io n h    io = current through solenoid 
 

hence 
 

B =  o io n (4.9) 
 

is the magnetic eld inside a solenoid. 

 

Assignment: Show that for a toroid, 

B = o 
i
o 
N

 
 

2 r 
 

Example 3: A solenoid has a length L = 1.23m and an inner diameter d = 
3.55cm. It has ve layers of windings of 850 turns each and carries a cur- 

~ 
rent io = 5.57A. Calculate the magnitude of the magnetic  eld B at it’s centre 

 

B =  o io n = (410 
7T:m=A)(5:57A) 5 1:23m  

   859 turns  
     

 

 

= 2:42 10 2T = 24:2mT 
 

Example 4: A solenoid 1.33m long and 2.60cm in diameter carries a 
current of 17.8A. The magnetic eld inside the solenoid is 2.4mT. Find the 
length of wire forming the solenoid. 

 
 

B L N 

B
 
=

 o 
i
o 
n

 
) N =  

o i and n = L 
 
 
 
 
 
 
 

 

94 



 
 
 
 

 

the total number of turns 
 

N = 
B L 

= 
(22:4  10 3T )(1:33m) 

 

o i 
 

(4   10 7T:m=A)(17:8A) 
 

  
   

= 1331:89 turns 
 

The length of the wire 
 

LW = N (  D) = 1331:89 

2:60cm 
 

  

100 
 

 
 

’ 109m long wire 
 

Faraday’s law of induction: The magnetic ux is a measure of the number 
of magnetic eld lines passing through any surface. 

 

Z 
~ ~ 

o = B:dA 
 

~ 

dA = an element of area of the surface 

 

The SI unit of the magnetic ux is the tesla.m
2
 i.e 

 

1Weber = 1 tesla.m2
 

 

The following two experimental observations demonstrate the induction 
of an e.m.f in a circuit. 

 

 

1. A moving magnet: An ammeter de ects when a magnet is moved 
through a coil, showing that a current has been set-up in the coil. 
Further experiments show that it is the relative direction of the 
magnet and coil that sets-up the induced current which is said to be 
due to an induced electromotive force. 

 
2. A changing current: A change in current through a coil causes an 

ammeter to de ect momentarily. 
 

In the above examples, it is the moving magnet or changing current that is 

responsible for the induced e.m.fs. The mathematical basis of induced e.m.f 

was studied by Michael Faraday in 1831 and formulated the law of induction, 

The induced e.m.f in a circuit is equal to the negative of the rate at which 

the magnetic ux through the circuit is changing with time 
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d 

"
 
=

 dt B 
(4.10)

 where " = induced e.m.f for 

a coil of N turns tightly wound to experience some change of ux,  

 

d 

"
 
=

 
N

 dt B 
(4.11)

 Self-inductance of a 

solenoid: The magnetic eld inside the solenoid is uniform and given by  

 

  N   
 

  

B =  o n I =  o 

 

I (4.12) 
 

  l 
 

where     
 

n = 
N - is no. of turns per unit length 

  
 

l   
 

     
 

 

N = total no. of turns 

 

l = total length 

 

I = current in solenoid 

 

The total magnetic ux is 

 

m = B N A = o n I N A 
 

so that with N = n l 

m  = o n
2 (l A) I 

 

showing that,  

m / I  
and,  

L =  o n2 A l (4.13) 
 

is the constant of proportionality known as the self- inductance of the coil. 
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The inductance of a circuit element (such as a solenoid) can therefore be 
de ned, using Faraday’s law, 

 

"l = L 

dI 

(4.14) 
 

dt 
  

where "l is the e.m.f. across the inductor. The SI unit for inductance is 

the henry2 (H) 
 

 

1H = 1 volt second = ampere 

 

Example 5: Find the self-inductance of a solenoid of length 10cm, area 5cm 
2 and 100 turns. 

 

n = 
N

 = 
100 turns

 = 103 turns=m 
 

l 0:1m  

hence 
 

L = (4 10 7)(103 turns)2 (5 10 4m2) (0:1m) = 6:28 10 5 H 

 

Example 6: At what rate must the current in the solenoid above change 
to induce an e.m.f of 10V? 

 

from Faraday’s Law 
 

 

" = 

d 

m 

 

but 

 

m = L I so that    " =  L 

dI 

= 10V 

 

      
 

dt    dt 
 

hence                 
 

    dI 
= 

" 

= 

  10V 

=   1:6  105 A=s 

   
 

              
 

    dt  L 6:28 
 

10 5H    
 

                
 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim  
 

2 after Joseph Henry (1797 - 1878)
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SPH101 Electricity and Magnetism I 

 

Lecture No. 12.  
Outline 

 

series and parallel arrangement of inductors, L-R circuits 

energy storage in magnetic elds, the coaxial cable 

 
Series and parallel arrangement of inductors: Figure 4.10 shows series 
and parallel arrangement of inductors.  

 
 
 
 
 
 
 

 

Figure 4.10: Arrangement of inductors in (a) series and (b) parallel. 
 

 

The total inductance is calculated as follows, for the series arrangement 
 

L=L1+L2 (4.15) 
 

and for the parallel arrangement 
 

1 =  1 + 1 : (4.16)  
 L

1 

  

L   
L

2  
 

L-R Circuits: Consider an inductor L connected in series to a resistor R 
and source of e.m.f " as illustrated on Figure 4.11.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.11: A simple L-R circuit. 
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When the switch is thrown to a, the loop theorem gives, 
 

i R  L 
d i  

+"=0 (4.17)  
dt  

   
 

 

 

L
d

dt
i
 + i R = " 

 
 

whose solution is of the form 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

i(t) = 
" 

1  e 
t=

 L withL = 
L 

(4.18) 
 

R R  

    
  

with the properties 

 

i = 0 at t = 0 
 

i = "  as t ! 1  
R 

 

The quantity L = R
L represents the inductive time constant, and 

determines how rapidly the current approaches the steady value R
" . The 

variation of potential di erence across the resistor R and inductor L is 
illustrated on Figure 4.12  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12: The variation of voltage across the resistor and inductor in a 
simple L-R circuit. 
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Note that:   
 

at t = 0 VR = 0, VL = "   
 

as t ! 1 VR  ! " VL  ! 0   
 

at any time VR  + VL  = "   
 

If the switch is thrown to b, the loop theorem gives  
 

L di  + i R = 0 (4.19)  
 

 

dt   
 

whose solution is   
 

i(t) = io e t= L (4.20) 
  

where io is the current at t=0. The decrease in current occurs at the 

same exponential time constant L = R
L , as does the rise in the current. 

 
 

 

Example 1: A solenoid has an inductance of 53mH and resistance 0.37 . 
If it is connected to a battery, how long will it take for the current to reach 
one-half it’s full equilibrium value? 

 

Equilibrium value of current i = 
" 

 reached as t ! 1 
 

R 
 

   1  " 

= 

"  

1  e t= L 

 
 

     

 

      

   2 R  R  
 

hence,               
 

t = 
 

ln 2 = 
 L 

ln 2 = 
53  10 3H 

 
ln 2 = 0:1s  

L R 0:37  
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Energy storage in a magnetic eld: Consider a series L-R circuit illus-
trated on Figure 4.13.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.13: A simple L-R circuit. 
 

 

From the loop theorem 

 

" = i R + L dt
di

 
  

hence 
 

" i = i2 R + L i 
di 

(4.21) 
 

   

dt  

  
  

where,  
" i = rate at which seat of e.m.f delivers energy to circuit. 

 

i2 R = rate at which energy is dissipated in resistor 

 

L idt
di = rate at which energy is stored in the magnetic eld. 

 

Let UB represent energy stored in the magnetic  eld of the inductor L, 

then 
dU

dtB = L idt
di

 

 
UB=Z

0  dtB dt = Z0  L i dt = 2L i2 

 U
B dU  i  di 1 
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UB = 
1 

L i2 (4.22) 
 

2  

   
  

is the total stored magnetic in an inductance L carrying a current i. For a 
uniform magnetic eld, the stored energy is uniformly distributed and the 
energy density is, 

 

B=
UB

 
 

A l 
 

and since 
 
 
 
 

then, 
 
 
 

 

For a solenoid, 
 
 

 

so that 
 
 
 

 

and with, 

 
 

 

where A l = volume of inductor 
 
 
 
 

 
  UB = 

1  
L i2 

  
 

       

 
2 

   
 

             
 

      1 L i2   
 

      

2 
   

 
  B =      :  (4.23)  

        
 

       A l   
 

   L =  o n2 l A   
 

B = 
1  o n2 l A i2 

= 
  1 

o
2 n2 i2  

            

2A l 

      
 

       2  o 
 

   B =  o n i   
 

   B =  1  B2
 (4.24)  

        
 

   2  o   
  

which is true for all magnetic con gurations even through the derivation 
was based on a solenoid. 
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Example 2: A coil has an inductance of 53 mH and resistance 0.35 . 

 

(a) If a 12 V source of e.m.f. is applied across the inductor, how much 
energy is stored in the magnetic eld after the current has reached it’s 
maximum value? 

 

(b) In terms of the inductive time constant L, how long does it take for the 
stored energy to reach half of it’s maximum value? 

 

The maximum current is calculated as follows, 
 

" 12V 

i
max 

=
 R 

=
 0:35  

= 34:3 A
 

hence the stored energy at i = imax is,  
 

UB  = 
1

2Li2max  = 
1

2(53 10 3H)(34:3A)2  = 31 J 
 
 

Let i be the current at the instant when the stored energy has reached 
half it’s maximum value, then, 

 
2 

 
1

2Li2  = 
1

2  
1

2Li2max 
 
 

hence, 

 
i
max  "  

 

i = p 

 

 = R
p

 

 
 

2 2 
  

so that from the expression for the current, 
 

 "  

exp(  t= L) 

 " 1  
 

i = 

 

1 = 

  
 

p 

 

 

 

R R 

 

 2 
 

one gets, 
 

t ’ 1:23 L : 
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The coaxial cable: consists of two long concentric conductors as 
illustrated on Figure 4.14. The conductors have radii a and b where 
b>>a. It’s central conductor carries a steady current i, and the outer 
conductor provides the return path.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.14: The cross-section of a coaxial cable. 
 
 
 

In the sphere between the two conductors, Amperes law can be used to 
evaluate the magnetic eld in the cable, 

 

  I B:dS
~~

 =  o i    
 

  B(2  r) =  o i    
 

   B = o i      (4.25)  
        

    2  r    
 

The energy density  B for points between the conductors 
 

 1 

B2
 

1  

 

o i 

 

2 
 

B = 

  

= 

   
 

2  o 2  o 2  r  
 

hence,             
 

  

B  = 

 o i2    

(4.26) 

 

   8  2 r2   
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Consider a volume element dV consisting of a cylidrical shell whose radii 

is r and r + dr and whose length is l. The energy dUB contained in it is 
 

o i2 

dU
B 
=

 
U

B 
dV

 
=

 8 2 r2 
(2

  
r l)

 
dr

 
  

= o i2 l dr 
4    r   

and the total energy stored 
 

   o i2 l    
b dr  

 

UB = 
Z

 dUB = 

  

 

Z
a 

  
 

4  r  
 

UB  = 

o i2 l 

ln 

 b 

 

 

(4.27) 

 

       

 4  a  
 

Using the earlier result, 
 

UB = 
1

2 L i2 
  

the inductance of the cable is given by, 
L = 2 i

2
 B = 2

o
 ln a : (4.28) 

   U   l   b   
             

 
 

The coaxial cable has useful applications in electrical/electronic signal 
trans-mission. Besides the inductance of the cable one has also to 
consider its impedance. Any impedance mismatches in a circuit may 
lead to undesired signal re ections or even losses. 

 
 

 

NB: These notes are an outline of what is discussed during the 
Lecture. Students are encouraged to actively attend lectures and most 
importantly, solve as many examples as possible on their own. 

 

 

Dr. N.O. Hashim 
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