SCHOOL OF PURE AND APPLIED SCIENCES

COMPLEX ANALYSIS

DATE: 25/8/2017	TIME: 11:00 – 1:00 pm
INSTRUCTIONS TO CANDIDATES	

ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (30MARKS)

a. State the Cauchy Riemann equations in polar form	(4marks)
b. Find the value of	
$(1-\sqrt{3}i)^{90}$	(3marks)
i) $(-1-\sqrt{3}i)^{\frac{1}{2}}$	(3marks)
c. Evaluate the following limit $\lim_{X \to 0} \frac{x + y - 1}{z}$	(4marks)
d. Evaluate	
i) The conjugate of $z_1 z_2$	
ii) $z_1 + z_2$ where $z_1 = x + iy$, $z_2 = 2 + i3$	(4 marks)
e. Express the following equation in terms of conjugate coordinates	2x + 3y = 5
	(4 marks)
f. Express the complex number $-3 + 3i$ in polar form and draw the v	ector associated to
this number in complex plane.	(4marks)
Examination Irregularity is punishable by expulsion	Page 1 of 3

$$z^{2} + 9$$

g. Determine the continuity of the function z(z-3i) at z=0 and z=3i (4marks)

QUESTION TWO (20MARKS)

a. Test for analyticity of the functions

i)
$$W = 2x - 3y + i(3x + 2y)$$
 (4 marks)

ii)
$$f(z) = |z|_2$$
 (3 marks)

- b. Construct an analytic c function whose real part $u(x, y) = x^3 3xy^2 + 3x^2 3y^2 + c$ (5marks)
- c. Derive the Cauchy Riemann equations in rectangular coordinates (5 marks)

d. Evaluate the integral
$$\int_{0} \frac{z^2 + 9}{z - 3} dz$$
 (3 marks)

QUESTION THREE (20MARKS)

- a. Given that $\frac{5}{x+iy} + \frac{2}{1} = 1$ where x and y are real numbers, find their values. (4 marks)
- b. Consider the function $f(z) = (2y x) + i(x^2 y)$. Determine the value of x that will make the function analytic. (5 marks)
- c. Find the Laurent series about the indicated singularity for each of the following functions and give the region of convergence of each series

i)
$$\frac{e^{2z}}{(z-1)^3}; z=1$$
(6 marks)
ii)
$$\frac{z-\sin z}{z^3}; z=0$$
(5 marks)

QUESTION FOUR (20MARKS)

a. State the Cauchy's integral formula and hence evaluate $\frac{1}{2\pi i} \int_{c}^{0} \frac{\cos \pi z}{z^2 - 1} dz$ where c is a rectangle with vertices -i, -2 - i, -2 + i, i (7 marks)

b. Evaluate the following residues

i)
Re
$$s\left(\frac{\sin z}{z^3}\right)$$

Re $s\left(\frac{1}{z^3}\right)$
ii)
 $z = 0\left(\frac{ze_z}{z}\right)$
 $z = 0\left(\frac{ze_z}{z}\right)$
 $z = 2$
(3 marks)
(3 marks)

iii) Res
$$f(z)$$
; $f(z) = \overline{z^2(z+1)}$ (7 marks)

QUESTION FIVE (20MARKS)

- a. Expand $f(z) = \frac{1}{z-1}$ as a Taylor series about z = 0 (4marks)
- 1 *z*+2
- b. State the Cauchy's residue theorem and use it to evaluate $I = 2\pi i \int_c \overline{z_2(z+1)} dz$, where c is the circle |z| = 2 (10 marks)
- c. Evaluate the integral $\frac{1}{2^{\frac{\pi}{2}}} \oint \frac{z^2 + 5}{z^2 + 2} dz$ (6 marks)