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TOPIC 1 

 

SET THEORY 

 

Objectives 

 

By the end of the topic, the leaner should be able to; 
 

i) Define a set 
 

ii) Use correct set notation 
 

iii) Describe various types of sets 
 

iv) Classify numbers. ie number types 
 

v) Express a worded set in set builder notation 
 

vi) Define the complement of a set 
 

vii) Use Venn diagrams to represent sets 

 

1.1 Introduction 

 

A set is a collection of numbers or objects with the same characteristics eg. the set of all 

digits we use to form numbers i.e.  
 

Notice that the digits have been enclosed in brackets . 
 

Sets do not have to contain numbers. For example, a set of vowels is   
 

We usually use capital letters to represent sets. Every item within the bracket is called an 

element (or a member) of the set. 

 
 
 

1.1.1 Notation 
 

 Reads ‘is an element of’ 
 

 Reads ‘is an element of’ 
 

or  is called the empty set and contains no elements. It is also referred to as the null 
 

set. 
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1.1.2 Subsets 
 

If P and Q are two sets, then: 
 

P Q reads “P is a subset of Q” and means that every element in P is also an ele  ent of Q. 
 

For example: 
 

Let P = and Q = {1, 2, 3, 4, 5, 6}. 
 

As every element is set P is contained in set Q, then P Q. 
 
 
 

 

1.1.3 Union and Intersection 
 

(i) P  Q is the union of sets P and Q and is made up of all elements which are in P or 
 
Q. 
 
(ii) P  Q is the intersection of sets P and Q and is made up of all elements which are 

both in P and Q. 

 

For example, if P = and Q = , then P  Q =  and P  Q = .  
 
 
 
 
 

 

1.1.4 Disjoint Sets 
 

If two sets have no common elements, then their intersection is an empty set and we say the 

sets are disjoint. 
 

Which of these sets are disjoint? 
 

(a) A =  and B =  
 

(b)  and   
 
 
 
 

1.1.5 Notation 
 

N = is the set of all natural numbers.   

Z = is the set of all integers. 
 

Z+ =  is the set of all positive integers. 
 

Z- = is the set of all negative integers.  
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Q =  is a set of all rational numbers. 
 

R =  is the set of all real numbers i.e. all numbers which can be pl ced on a 

number line. 

Notice that Z = Z-  Z+ which simply means a set of all positive integers.  

 

1.1.6 Irrational Numbers 
 

These numbers which cannot be expressed in the form 
 

.   

Numbers such as  are all irrational. 
 

This means that their decimal expansions do not terminate or recur. 
 

Other irrational numbers include number like 

 
 
 
 
 

 

which is the ratio of a 
 

circle’s circumference to its diameter and e = 2.718281… 
 

Rational numbers are denoted by Q while irrational numbers are denoted by Q’. 
 
 
 

 

1.1.7 Counting in a Set 
 

The set A =  has 5 elements, so we write n(A) = 5. The set  

has 50 elements, so we write n(A) = 50. 

 
 

 

1.1.8 Finite & Infinite Sets 
 

A set that has a finite number of elements is said to be a finite set. 
 

Infinite sets are sets with infinitely many members. For example Z =  

is an infinite set. 

Note: R = is also an infinite set..  
 
 
 
 
 

 

1.2 Set Builder Notation 
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A x x Z, 2 x 4 reads “The set of all x such that x is an integer between -2 and 4 including -2 

and 4. 
 

A x : x Z , 2 x 4 reads the same as above. 
 
 

 

Example 1 
 

Given , A x x Z,3 x  10 }write down:  

 

(a) The meaning of the set builder notation 
 
(b) List the elements of set A 
 
(c) Find n(A) 
 

 

(a) The set of all x such that x is an integer between 3 and 10 including 3 and 10. 
 
(b) A ={3,4,5,6,7,8,9,10} 
 
(c) n(A) = 8 as these are 8 elements 

 
 
 
 
 

 

1.3 Complement of a Set 

 

If, for example, we are interested in natural numbers from 1 to 20 and we want to consider 

subsets of this set, then: 

 =  is the universal set in this situation. The symbol  is used to 

represent the universal set. In some cases, the Greek letter (epsilon) is used to represent the 

universal set. 
 

Definition: The complement of a set A, denoted as AI is the set of all elements of  which 

are not in A. 

If the universal set is  = = 
 

and A = 

 

, then the complement of  
  

A, denoted as AI  is .  
 

n(A) is used to represent the number of elements in set A. 
 

Three obvious relationships are observed concerning A and A1. These are: 
 

(i) A AI
 U 
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(ii) AAI0 
 
(iii) n( AI )  n(U )  n( A) 
 
 
 

 

1.4 Venn diagrams 
 
 

 

Venn diagrams are used to represent sets of objects, numbers or things. The universal set is 

usually represented by a rectangle whereas sets within it are usually represented by circles 

or ellipses. For example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Is a Venn diagram which shows set A within the universal set U .A1 the complement of A is 
 

shaded. In this case, U could be .  
 

A =  

A1 =  
 
These elements can be shown as:  
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1.4.1 SUBSETS 
 

As B A, the B is contained within A as every element of B is also in A.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.4.2 INTERSECTION 
 

As A  B consists of all elements common to both A and B then A B is the shaded region.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.4.3 UNION 
 

As A B consists of all elements in A or B (or both A and B), then A B is the shaded region.  
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If two sets A and B are disjoint and exhaustive, then A B = and U = A B. This can be 

shown as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example: 
 

Given U = gram the sets   

(a) A =  and B = .  
 

Solution  
 
 
 
 
 
 
 
 
 
 

 

In this case A B ≠ U 

 
 
 

(b) A=  B=  

Solution 
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In this case, A B =  i.e. A and B are disjoint and mutually exclusive. 
 
 
 

 

1.5 Numbers in Regions 

 

Consider the Venn diagram below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If (3) means there are e elements in set P Q, how many elements are there in: 
 

(a) P (b) Q1 (c) P Q (d) P but not Q (e) Q but not P (f) neither P nor Q? 

Solution 

 

(a) n(P) = 7 + 3 = 10 
 
(b) n(Q1) = 7 + 4 = 11 
 
(c) n(P Q) = 7 + 3 + 11 = 21 
 
(d) n(P but not Q) = 7 
 
(e) n(Q but not P) = 11 
 
(f) n(neither P nor Q) = 4 
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Example 3 
 

(a) A squash club has 27 members. 19 have black hair, 14 have brown eyes and it have 

both black hair and brown eyes. 
 

(i) Place this information on a Venn diagram. 
 

(ii) Hence, find the number of members with: 
 

IBlack or brown eyes 
 

IIBlack hair but not brown eyes 
 

 

(a) Let Bl represent black hair and Br represent brown eyes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a = b + c + d = 27 
 

a + b = 19 
 

B + c = 14 
 

But b = 11 
 

 a = 19 – 11 = 8 
 

c = 14 – 11 = 3 
 

d = 27 – (11 + 8 + 3) = 27 – 22 = 5 
 

 I) n(Bl Br) = 8 + 11 + 3 = 22 
 

Or 27-d =27 – 5 = 22 
 

II) n(Bl but not Br) = 8 
 

 

Example 4 
 

A platform diving squad of 25 had 18 members who dive from 10m and 17 who dive from 

4m. How many divide from both platforms? 
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Solution 
 

Let T represent those who dive from 10m and F represent those who dive from 4m. Then  
 
 
 
 
 
 
 
 
 
 
 

 

a + b = 18 
 

b + c = 17 
 

a + b + c = 25 
 

a = 25 – 17 
 

= 8 
 

b = 18 – 8 = 10 
 

8 + c = 17 
 

c= 7 
 

 c = 8, b = 10 and h = 1 

 
 
 

(a) P (reads A only) = 18% (shaded) 
 

 

(b) n(B or C) = n(B C) 
 

= 100% - 1% - 18% 
 

= 81% 
 

 

(c) n(A or B but not C) = 18% + 5% + 24% 
 

= 47% 
 

Question 
 

A city has three newspapers A, B and C . Of the adult population, 1% read none of these 

newspapers. 36% read A, 40% read B, 52% read C, 8% read A and B, 11% read B and C, 13% 
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read A and C and 3% read all the three newspapers. What percent of the adult population 

read: 

(a) Newspaper A only 
 
(b) Newspaper B or Newspaper C 
 
(c) Newspaper A or B but not C 
 

 

Solution  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From the given information: 
 

 

a = 3 
 

a + d = 8 
 

a + b = 11 
 

a + c = 13 
 

 d = 5, b = 8, c = 10 

 
 
 
 

 

g + 3 + 5 + 10 = 36 g = 18 

e + 3 + 5 + 8 + 40 e = 24 

f + 3 + 8 + 10 = 52 f = 31  
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1.6 Revision Exercise 

 

1. Given M =  and N =  
 

(a) Indicate True or False 
 

(i) 4 M 
 

(ii) 6 M 
 

(b) List: 
 

(i) M  N 
 

(ii) M  N 
 

(c) Is: 
 

(i) M  N? 
 

(ii)   N? 
 

 

2. Write in set language. 
 

(a) 5 is an element of D 
 

(b) d is not an element of all vowels 
 

(c) is a subset of   
 

 

3. Find A  B and A  B for A = and B = .  
 

4. State whether the following sets are finite or infinite: 
 

(a) ,  
 

(b) , 
 

(c) , 
 

(d) ,  
 

5. Write down the meaning of the following in set builder notation. 
 

(a) A = ,  
 

 

(c) A = , 
 
6. Find C I given that: 
 

 = and C =   
17 



 

 

(b) C =       and  = Z. 
 
 
 
 

 

1. If  = , P =  and 

Q = . 
 

(a) List P and Q 
 

(b) Find P Q 
 

(c) Find P Q 
 

(d) Verify that n(P Q) = n(P) + n(Q) - n(P Q) 
 
 
 
 
 

8. Represent sets A and B on a Venn diagram.  
 

(a) U = , A = , B = 

(b) U = , A = , B = 

(c) U = , A = , B = 

(d) U = , A = , B = 

9.  Given that U=    

A =  , B =  ,  
 

(a) List sets A and B 
 

(b) Find A B and A B 
 

(c) Represent sets A and B on a Venn diagram 
 

10. Given that U=  

 

R =  
 

S = 
 

(a) List sets R and S   
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(b) Find R S and R S  
(c) Represent the sets R and S on a Venn diagram 

 

 

11. If (Z) means that there are Z elements in the set A B, give the number of elements in: 
 

(b) B (b) A (c) A B 
 

(d) neither B nor A (e) A but not B 

 

 

12. Given  

 
 

 

n (S) = 30, n(R) = 25 and 

 
 

 

= 48, find  
 

 

(a)  
 

(b) n(S but not R) 
 
Selected References 
 

i. Basic set theory by A shen and N.K Verchagin 

 
ii. Basic set theory by A Levy 

 
iii. Quaantitative Techniques Simplifiedby N.A Saleemi  
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TOPIC 2 

 

PROBABILITY 
 
 
 

 

Objectives 

 

By the end of the topic, the learner should be able to 

 

i) Define probability 
 

ii) Use the formula for finding the probability of an event. to find the probabilities of 

events with equally likely and non-equally likely outcomes. 
 

iii) To determine the sample space of an experiment by examining each 

possible outcome. 
 

iv) To understand the theory behind mutually exclusive and non-mutually 

exclusive events and to classify an experiments accordingly. 
 

v) To find the probability of mutually exclusive events by applying the addition rule. 
 

vi) To understand the theory behind independent events and to use the 

multiplication rule to compute related probabilities. 
 

vii) To understand the theory behind conditional probability. To derive the formula 

for finding conditional probabilities, and 
 

viii) To compute related probabilities using tree diagrams. 
 

2.1 Introduction 

 

In the study of chance, we need a mathematical method to describe the likelihood of events 

happening. 

 

Probability is the study of chance (likelihood) of events happening. 

 

The events are also referred to as outcomes. The study of probability has vitally important 

applications in physical and biological sciences, economics, politics, sport, insurance, quality 

control, planning in industry, and a host of other areas. 

 

The range of probability 

 

Probability is studied by assigning a number which lies between 0 and 1. 
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An event which a 0% chance of happening (“It did not rain on Tuesday” i.e., it is impossible) 

is assigned a probability of 0. 

 

An event which has a 100% chance of happening is assigned a probability of 1 

 

All other events can then be assigned a probability between 0 and 1. 
 
 

2.2 Definitions 

 

Probability Experiment 

 

Process which leads to well-defined results called outcomes 

 

Outcome 

 

The result of a single trial of a probability experiment .For example, in tossing of a coin, a 

head or a tail constitute the two possible outcomes. 

 

Sample Space 

 

Set of all possible outcomes of a probability experiment It is denoted by ‘S’ and its number 

of elements are n(s). For example; In throwing a dice, the number that appears on top is any 

one of 1, 2, 3,4,5,6. So here, 

 

S = {1, 2, 3, 4, 5, 6} and n(s) = 6 

 

Event 

 

One or more outcomes of a probability experiment. In other words every subset of a sample 

space is called an event and is denoted by ‘E’. 

 

Example; In throwing a dice S = {1, 2, 3, 4, 5, 6}, the appearance of an even number will be 

the event E = {2, 4, 6}. 

 

Clearly, E is a subset of S. 

 

Classical Probability 
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Uses the sample space to determine the numerical probability that an event will happen. 
 

Also called theoretical probability. 

 

Equally Likely Events 

 

Events which have the same probability of occurring. For example, in tossing of a fair coin, 

the appearance of a head or a tail are equally likely events. 

 

Complement of an Event 

 

All the events in the sample space except the given events. 

 

Empirical Probability 

 

Uses a frequency distribution to determine the numerical probability. An empirical 

probability is a relative frequency. 

 

Subjective Probability 

 

Uses probability values based on an educated guess or estimate. It employs opinions and 

inexact information. 

 

Mutually Exclusive Events 

 

Two events which cannot happen at the same time. For example in tossing a coin it is not 

possible to obtain a head and a tail in a single toss. Similarly, events such as “It rained on 

Tuesday” and “It did not rain on Tuesday” are mutually exclusive events. When calculating 

the probabilities of mutually exclusive events you add up the probabilities. 

 

Disjoint Events 

 

Another name for mutually exclusive events. 

 

Independent Events 

 

Two events are independent if the occurrence of one does not affect the probability of the 

other occurring. For example the events “It rained on Tuesday” and “My chair broke at 

work” are two independent events. When calculating the probabilities of independent 
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events you multiply the probabilities. If a coin is tossed twice, the two outcomes will be 

unrelated Obtaining a head on the first toss does not give a bearing on what will show up in 

the next toss. 

 

Dependent Events 

 

Two events are dependent if the first event affects the outcome or occurrence of the second 

event in a way the probability is changed. 

 

Conditional Probability 

 

The probability of an event occurring given that another event has already occurred. 

 

Bayes' Theorem 

 

A formula which allows one to find the probability that an event occurred as the result of a 

particular previous event. 

 

2.3 Axiomatic Approach to Probability 

 

The modern theory of probability is based on the axiomatic approach introduced by the 

Russian mathematician A.N Kolmogorov in 1930’s. In axiomatic approach, some concepts 

are laid down at certain properties or postulates commonly known as axioms are defined 

and from these axioms the entire theory is developed by logic of deduction. 

 

2.3.1 Probability Axioms 
 

Non Negativity 

 

This means that 0 ≤ P(E) ≤ 1 for every event in S.[S = sample space] 

Proof: Let ‘S’ be the sample space and ‘E’ be the event. Then 

 

0 ≤  n(E) ≤  n(S) 

 

[The number of elements in a non zero outcome cannot exceed the sample space] 

Dividing through by n(S) 
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0/n(S) ≤ n(E)/n(S) ≤  n(S)/n(S) 

 

i.e, 0 ≤  P(E) ≤  1 

 
 
 

 

Sample Space refers to the total outcomes of a probability theory experiment e.g the above 

tossing of a coin experiment, etc 

 

Universal Set: 

 

This means P(S) = 1 [S = sample space] 

 

Proof: In the sure event, n(E) = n(S) 

 

[ Since the number of elements in the event ‘E’ will be equal to the number of elements in 

the sample space ‘S’] 

 

By definition of probability: 

 

P(S) = n(S)/n(S) = 1 

 

Which implies P(S) = 1 

 
 
 

 

The addition axiom 

 

This means that P {E1 + E2) = P (E1) + P (E2) for any two or even more mutually exclusive 

events in S. 

 

P (E1 U E2) = P (E1) + P (E2) 

 
 
 

 

Provided E1 and E2 are mutually exclusive. 

 

i.e. E1∩E2 is empty. 
 
 

2.4 Mutually exclusive events 
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Two or more events are called mutually exclusive if the occurrence of any one of them 

precludes the occurrence of any of the others. The probability of occurrence of two r more 

mutually exclusive events is the sum of the probabilities of the individual events 

 

Sometimes when one event has occurred, the probability of another event is excluded 

(referring to the same given occasion or trial). 

 

For example, throwing a die once can yield a 5 or 6, but not both, in the same toss. The 

probability that either a 5 or 6 occurs is the sum of their individual probabilities. 
 
 
 
 
 
 
 
 
 
 
 
 

 

EXAMPLE: From a bag containing 5 white balls, 2 black balls, and 11 red balls, 1 ball is 

drawn. What is the probability that it is either black or red? 

 

SOLUTION: The draw can be made in 18 ways. The choices are 2 black balls and 11 red 

balls, which are favorable, or a total of 13 favorable choices. Then, the probability of success 

is 

 
 
 
 
 

 

Since drawing a red ball excludes the drawing of a black ball, and vice versa, the two events 

are mutually exclusive; so the probability of drawing a black ball is 

 
 
 
 
 

 

and the probability of drawing a red ball is  
 
 
 
 

 

Therefore, the probability of success is 
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EXAMPLE: What is the probability of drawing either a king, a queen, or a jack from a deck 

of playing cards? 

 

SOLUTION: The individual probabilities are  
 
 
 
 
 
 
 
 
 
 
 
 

 

Therefore, the probability of success is  
 
 
 
 
 
 
 
 
 
 
 
 

 

EXAMPLE: What is the probability of rolling a die twice and having a 5 and then a 3 show 

or having a 2 and then a 4 show? 

 

SOLUTION: The probability of having a 5 and then a 3 show is  
 
 
 
 
 
 
 
 
 
 

and the probability of having a 2 and then a 4 show is 
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Then, the probability of either p1 or p2 is  
 
 
 
 
 
 
 
 
 
 

 

PRACTICE PROBLEMS: 

 

1 When tossing a coin, you have what probability of getting either a head or a tail? 

 

2. A bag contains 12 blue, 3 red, and 4 white marbles. What is the probability of 

drawing a. in 1 draw, either a red or a white marble? 

 
b. in 1 draw, either a red, white, or blue marble? 

 

c. in 2 draws, either a red marble followed by a blue marble or a red marble followed by a 

red marble? 

 

3. What is the probability of getting a total of at least 10 points in rolling two dice? (HINT: 

You want either a total of 10, 11, or 12.) 
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ANSWERS:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.5 Dependent events 

 

In some cases one event is dependent on another; that is, two or more events are said to be 

dependent if the occurrence or nonoccurrence of one of the events affects the probabilities of 

occurrence of any of the others. 

 

Consider that two or more events are dependent. If p1 is the probability of a first event; p2 

the probability that after the first happens, the second will occur; p3 the probability that after 

the first and second have happened, the third will occur; etc., then the probability that all 

events will happen in the given order is the product p1 - p2 - p3. 

 

EXAMPLE: A box contains 3 white marbles and 4 black marbles. What is the probability of 

drawing 2 black marbles and 1 white marble in succession without replacement? 

 

SOLUTION: On the first draw the probability of drawing a black marble is  
 
 
 
 
 

 

On the second draw the probability of drawing a black marble is  
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On the third draw the probability of drawing a white marble is  
 
 
 
 

 

Therefore, the probability of drawing 2 black marbles and 1 white 

marble is 

 
 
 
 
 
 
 
 
 
 
 

EXAMPLE: Slips numbered 1 through 9 are placed in a box. If 2 slips are drawn, without 

replacement, what is the probability that 

 

1. both are odd? 

 
2. both are even? 
 
 
 

 

SOLUTION: 

 

1. The probability that the first is odd is  
 
 
 
 
 
 

and the probability that the second is odd is  
 
 
 
 

 

Therefore, the probability that both are odd is 
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2. The probability that the first is even is 
 
 
 
 

 

and the probability that the second is even is 
 
 
 
 

 

Therefore, the probability that both are even is  
 
 
 
 
 
 
 
 
 
 

 

A second method of solution involves the use of combinations. 

 

1. A total of 9 slips are taken 2 at a time and 5 odd slips are taken 2 at a time; therefore, 
 

p 
5C

2     5 
 

9C2 18 

 

2. A total of 9C2 choices and 4 even slips are taken 2 at a time; therefore,  
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Practice Problems: 

 

In the following problems assume that no replacement is made after each selection: 

 

1. A box contains 5 white and 6 red marbles. What is the probability of successfully 

drawing, in order, a red marble and then a white marble? 

 
2. A bag contains 3 red, 2 white, and 6 blue marbles. What is the probability of drawing, in 

order, 2 red, 1 blue, and 2 white marbles? 

 
3. Fifteen airmen are in the line crew. They must take care of the coffee mess and line shack 

cleanup. They put slips numbered 1 through 15 in a hat and decide that anyone who draws 

a number divisible by 5 will be assigned the coffee mess and anyone who draws a number 

divisible by 4 will be assigned cleanup. The first person draws a 4, the second a 3, and the 

third an 11. What is the probability that the fourth person to draw will be assigned 

 

a. the coffee mess? 

 
 

2.6 Independent events 

 

Two or more events are independent if the occurrence or nonoccurrence of one of the events 

has no affect on the probability of occurrence of any of the others. 

 

When two coins are tossed at the same time or one after the other, whether one falls heads 

or tails has no affect on the way the second coin falls. Suppose we call the coins A and B. 

The coins may fall in the following four ways: 

 

1. A and B may fall heads. 

 

2. A and B may fall tails. 

 
3. A may fall heads and B may fall tails. 

 
4. A may fall tails and B may fall heads. 

 

The probability of any one way for the coins to fall is calculated as follows: 

 

s=4 
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and 

 

n=4 

 

therefore,  
 
 
 
 

 

This probability may be determined by considering the product of the separate probabilities; 

that is, 

the probability that A will fall heads is 
1

 

2 
 

the probability that B will fall heads is 
1

 

2 

 

and the probability that both will fall heads is  
 
 
 
 
 

 

In other words, when two events are independent, the probability that one and then the 

other will occur is the product of their separate probabilities. 

 

EXAMPLE: A box contains 3 red marbles and 7 green marbles. If a marble is drawn, then 

replaced, and another marble is drawn, what is the probability that both marbles are red? 

 

SOLUTION: Two solutions are offered. First, by the principle of choice, 2 marbles can be 

selected in 10 ways. The red marble may be selected on the first draw in three ways and on 

the second draw in three ways; and by the principle of choice, a red marble may be drawn 

on both trials in 3 ways. Then the required probability is 

 
 
 
 

 

The second solution, using the product of independent events, follows: The probability of 

drawing a red marble on the first draw 
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is 10
3

 , and the probability of drawing a red marble on the second draw is 10
3

 . Therefore, the 
 
 

probability of drawing a red marble on both draws is the product of the separate 

probabilities or 

 
 
 
 
 
 
 
 

 

2.7 Sample Space: 
 

The set of all possible outcomes of a random experiment is called the sample space for 

that experiment. It is usually denoted by S. 
 
 
 
 

Examples: 
 

(i) When a coin is tossed either a head or a tail will come up. If H denotes the 

occurrence of head and T denotes the occurrence of tail, the 
 

Sample space S = (H, T)  

Note: 
 

If a denotes the occurrence of head and b denotes the occurrence of tail, then 

 

Sample space S = (a, b). 

 

When two coins are tossed. 
 

 

Sample Space S = {(H, H), (H, T), (T, H), (T, T)} 

 

where (H, H) denotes the occurrence of head on the first coin and occurrence of head on 
the second coin. Similarly (H, T) denotes the occurrence of head on the first coin and 
occurrence of tail on the second coin.  

When a die is thrown any one of the numbers 1, 2, 3, 4, 5 and 6 will come up. 
Therefore, sample space 

S={1,2,3,4,5,6} 

Here 1 denotes the occurrence of 1, 2 denotes the occurrence of 2 and so on.  

Note:  

If occurrence of 1, 2, 3, 4, 5 and 6 are denoted by 
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a, b, c, d, e, f respectively then sample space S = {a, b, c. d, e,f) 

 
 
 

 

(iv) When two balls are drawn from a bag containing 3 red and 2 black balls. 
 

Sample space,  

S = {(R1, R2), (R1, R3), (R2, R3), (B1, B2), (R1, B1), (R1, B2), (R2, B1) (R2, B2), (R3, B1), (R3, B2)} 

 

Note:  

Here R1, R2, R3 have been used for the occurrence of the three red balls whether red balls 

are identical or not. 
 

Example 
 
 

When one ball is drawn at random from a bag containing 3 black and 4 red balls (balls 

of the same colour being identical or different), then sample space 

 

S = {B1, B2, B3, R1, R2, R3, R4}\ n(S) = 7 
 

Here the three black balls may be denoted by B|, B2 and B3 even if they are identical 

because while finding probability only number of black and red balls are to be taken 

into account. 
 

Let E = the event of occurrence of a red ball. 
 

Then E = {R,, R2, R3, R,) .-. n(E) = 4 

 

 

Example 2 
 
 

When two coins are tossed, sample space S = (HH, HT, TH, TT}. 
 
 

Let E = the event of occurrence of one head and one tail, then 

E = {HT, TH} 

 

Now P(E) = n(E) / n(S) = 2/4 = 

1/2 2.8 Conditional Probability 

 

The conditional probability of an event B is the probability that the event will occur given 

the knowledge that an event A has already occurred. This probability is written P(B|A), 
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notation for the probability of B given A. In the case where events A and B are independent 

(where event A has no effect on the probability of event B), the conditional probability of 

event B given event A is simply the probability of event B, that is P(B). 

 

If events A and B are not independent, then the probability of the intersection of A and B (the 
 

probability that both events occur) is defined by P(A and B) = P(A)P(B|A). 

 
 

 

From this definition, the conditional probability P(B|A) is easily obtained by dividing by 
 

P(A):  
 
 
 
 
 
 
 
 

 

Note: This expression is only valid when P(A) is greater than 0. 

 

Example 1: 

 

In a card game, suppose a player needs to draw two cards of the same suit in order to win. 

Of the 52 cards, there are 13 cards in each suit. Suppose first the player draws a heart. Now 

the player wishes to draw a second heart. Since one heart has already been chosen, there are 

now 12 hearts remaining in a deck of 51 cards. So the conditional probability P(Draw second 

heart|First card a heart) = 12/51. 

 

Suppose an individual applying to a college determines that he has an 80% chance of being 

accepted, and he knows that dormitory housing will only be provided for 60% of all of the 

accepted students. The chance of the student being accepted and receiving dormitory 
 

housing is defined by P(Accepted and Dormitory Housing) = P(Dormitory 

Housing|Accepted)P(Accepted) = (0.60)*(0.80) = 0.48. 
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To calculate the probability of the intersection of more than two events, the conditional 

probabilities of all of the preceding events must be considered. In the case of three events, A, 

B, and C, the probability of the intersection P(A and B and C) = P(A)P(B|A)P(C|A and B). 

 

Example 2: 

 

Consider the college applicant who has determined that he has 0.80 probability of 

acceptance and that only 60% of the accepted students will receive dormitory housing. Of 

the accepted students who receive dormitory housing, 80% will have at least one roommate. 

The probability of being accepted and receiving dormitory housing and having no 
 

roommates is calculated by: P(Accepted and Dormitory Housing and No Roommates) = 

P(Accepted)P(Dormitory Housing|Accepted)P(No Roomates|Dormitory Housing and Accepted) = 

(0.80)*(0.60)*(0.20) = 0.096. The student has about a 10% chance of receiving a single room at 

the college. 

 

Example 3: 
 
 

The question, "Do you smoke?" was asked of 100 people. Results are shown in the table. 
 
        

  Yes  No  Total  

        
     

Male  19  41  60  

        
     

Female  12  28  40  

        
     

Total  31  69  100  

        
         
 

What is the probability of a randomly selected individual being a male who smokes? 

This is just a joint probability. The number of "Male and Smoke" divided by the total 

= 19/100 = 0.19 
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What is the probability of a randomly selected individual being a male? This is the 
 

total for male divided by the total = 60/100 = 0.60. Since no mention is made of 

smoking or not smoking, it includes all the cases. 
 

What is the probability of a randomly selected individual smoking? Again, since no 

mention is made of gender, this is a marginal probability, the total who smoke 

divided by the total = 31/100 = 0.31. 

What is the probability of a randomly selected male smoking? This time, you're told 

that you have a male - think of stratified sampling. What is the probability that the 

male smokes? Well, 19 males smoke out of 60 males, so 19/60 = 0.31666... 
 

What is the probability that a randomly selected smoker is male? This time, you're 

told that you have a smoker and asked to find the probability that the smoker is also 

male. There are 19 male smokers out of 31 total smokers, so 19/31 = 0.6129 (approx) 

 

2.9 Bayes’ Theorem 

 

Another important method for calculating conditional probabilities is given by Bayes's 

formula. The formula is based on the expression P(B) = P(B|A)P(A) + P(B|Ac)P(Ac), which 

simply states that the probability of event B is the sum of the conditional probabilities of 

event B given that event A has or has not occurred. For independent events A and B, this is 

equal to P(B)P(A) + P(B)P(Ac) = P(B)(P(A) + P(Ac)) = P(B)(1) = P(B), since the probability of 

an event and its complement must always sum to 1. Bayes's theorem is defined as follows: 
 
 
 
 
 
 
 
 

Example 

 

Suppose a voter poll is taken in three states. In state A, 50% of voters support the liberal 

candidate, in state B, 60% of the voters support the liberal candidate, and in state C, 35% of 

the voters support the liberal candidate. Of the total population of the three states, 40% live 

in state A, 25% live in state B, and 35% live in state C. Given that a voter supports the liberal 

candidate, what is the probability that she lives in state B? 
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By Bayes's formula, 

 

P(Voter lives in state B|Voter supports liberal candidate) = 

 

P(Voter supports liberal candidate|Voter lives in state B)P(Voter lives in state B)/ 

 

(P(Voter supports lib. cand.|Voter lives in state A)P(Voter lives in state A) + 

 

P(Voter supports lib. cand.|Voter lives in state B)P(Voter lives in state B) + 

 

P(Voter supports lib. cand.|Voter lives in state C)P(Voter lives in state C)) 

 

= (0.60)*(0.25)/((0.50)*(0.40) + (0.60)*(0.25) + (0.35)*(0.35)) 

 
= (0.15)/(0.20 + 0.15 + 0.1225) = 0.15/0.4725 = 0.3175. 
 
 

 

The probability that the voter lives in state B is approximately 0.32. 
 
 
 
 

 

2.10 Tree Diagrams 

 

Tree diagrams, as the name suggests, look like a tree as they branch out symmetrically. 

They are used to help you visualize more complicated probability problems. 
 

A favourite with maths examiners is to get you to use tree diagrams to show the 

probabilities of you picking a red then a white ball out of a bag of red and white balls etc. 

This is not very realistic, so here is an example of how tree diagrams can be used in real life: 

 

A box of chocolates is randomly selected from a production line to check to see if any of the 

chocolates are faulty. Each box contains 12 soft-centres and 8 hard-centres. Two chocolates 

are randomly selected from the box and are tested to see if they have any faults. 

 

What is the probability of selecting two soft-centred chocolates? 

 

What is the probability of selecting a soft-centred and a hard-centred chocolate? 

 

To answer these questions, we can draw a tree diagram. First you need to work out some 

probabilities to get the tree diagram started.  
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Example 1 

 

If we have 12 soft-centred and 8 hard-centred chocolates in a box, we have a tot l of 20 to 

choose from. 
 

When we select the first chocolate the probability of getting a soft-centre = and the 

probability of getting a hard-centre = . 
 

Now we can draw the first branches of the tree diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that when 2 branches come from a single point the total of the probabilities on each 

branch = 1 (this can make calculations quicker). 

 

After first selecting a Soft-centred chocolate, the tree diagram indicates that there are two 

things that can happen. We can select another Soft-centre or we can select a hard-centre. 

 

You now need to work out the probability of selecting another soft-centre if you've selected 

one already. Note that if you've already selected a chocolate you will only have 19 in total 

left in the box to choose from when you select the second chocolate. Note also that if you 

selected a soft centre first then you will only have 11 soft-centres left in the box to choose 

from. So the probability of choosing a second soft-centre = . 

 
 
 
 
 

 

39 



Using the fact that total of probabilities on two branches = 1, we can say that the probability  

of getting a hard-centre as the second chocolate = . 
 

Using similar methods we work out the rest of the probabilities and put them on the tree as 

follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now we can find the probability of selecting two soft-centred chocolates: 
 

P(Soft AND then Soft) = 
12

20 x19
11

 = 
132

380 

 

This fraction can be simplified a bit further (divide by two a couple of times) to give 80
33

 

 

We can also find the probability of selecting a soft-centred and a hard-centred chocolate. 

Note that there are two ways to get this result: Select a soft-centre then a hard-centre or 

select a hard-centre then a soft-centre. 
 

P(Hard AND then Soft) = 20
8

 x
12

19 = 380
96

 
 

 

P(Soft AND then Hard) = 20
8

 x
12

19 = 380
96

 
 

 

We add these together to get the answer: 
 

P(Hard then Soft OR Soft then Hard) = 380
96

 + 380
96
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This answer can be simplified to give 100
6

 
 

 

Note that the tree diagram representation of this experiment involves two parts, 'the first 

toss of the coin' and 'the second toss of the coin'. 
 

2.11 Revision Exercise 

 

1. If a die is tossed twice, what is the probability of rolling a 2 followed by a 3? 

 
2. A box contains 2 white, 3 red, and 4 blue marbles. If after each selection the marble is 

replaced, what is the probability of drawing, in order 

 

a) a white then a blue marble? 

 
b) a blue then a red marble? 

 
c) a white, a red, then a blue marble? 

 

3. A bag contains two red sweets and three green sweets. Jacques takes one sweet 

from the bag, notes its colour, then eats it. He then takes another sweet from 

the bag. 
 

Complete the tree diagram below to show all probabilities. 
 
 

 

2 Red 
 
5   
 
 

 
2 
4 

 
Green 

 
 
Red 
 
 
 
 

 
Green 
 
Red 
 
 
 
 

 
Green 
 

 
 
 

In the following problems assume that no replacement is made after each selection: 

 

4. A box contains 5 white and 6 red marbles. What is the probability of successfully 

drawing, in order, a red marble and then a white marble? 

 
41 



5. A bag contains 3 red, 2 white, and 6 blue marbles. What is the probability of drawing, in 

order, 2 red, 1 blue, and 2 white marbles? 

 
6. Fifteen airmen are in the line crew. They must take care of the coffee mess and line shack 

cleanup. They put slips numbered 1 through 15 in a hat and decide that anyone who draws 

a number divisible by 5 will be assigned the coffee mess and anyone who draws a number 

divisible by 4 will be assigned cleanup. The first person draws a 4, the second a 3, and the 

third an 11. What is the probability that the fourth person to draw will be assigned 

 

a. the coffee mess? 

 

b. the cleanup? 

 
 

 

Suggested References 

 

i. Probability and Statistics by R.S Pilaai 

 
ii. Schaum's Outlines Probability-3rd edition 

 

iii. Quaantitative Techniques Simplifiedby N.A Saleemi 
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TOPIC 3 

 

MEASURES OF CENTRAL TENDENCY 

 

Objectives 

 

By the end of the topic, the learner should be able to 

 

i) Define and calculate the various types of averages such as; 

 
Arithmetic mean 

 

Median 

 
Mode 

 
Weighted mean 

 

Geometric mean 

 
Harmonic mean 

 
ii) Choose an appropriate measure of central tendency for a given situation using 

the characteristics of the above averages 

 
iii) Describe the qualities of a good average. 

 
iv) Define skewness and distinguish between the normal, the positively skewed 

and the negatively skewed distributions. 

 
 

 

3.1 Averages 

 

Measures central tendency or measures of location or simple averages are used for 

comparing frequency distributions. There are several different measures of central tendency 

and each has its own advantages and disadvantages. It is of importance to choose the 

appropriate measure for the particular comparison we wish to make. 
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3.1.1 Qualities of a good average 
 

The measurement of the values around which the data is scattered is known as measures of 

central tendency or averages. The qualities of a good average are as follows: - 

(i) It shall be rigidly defined 
 
(ii) It should be based on all values 
 
(iii) It should be easily understood and calculated 
 
(iv) It should be least affected by the fluctuations of sampling. 
 
(v) It should be capable of further algebraic or statistical treatment / or analysis. 
 
(vi) It should be least affected by extreme values. 
 
 
 

 

3.1.2 Types of averages 
 

The following are the important types of averages: - 
 

(i) Arithmetic mean or simple average 
 
(ii) Median 
 
(iii) Mode 
 
(iv) Weighted Mean 
 
(v) Geometric mean 
 
(vi) Harmonic mean 
 
 
 

 

3.2 Arithmetic Mean 

 

3.2.1Arithmetic Mean of Ungrouped Data 
 

The arithmetic mean, , or simply called mean, is obtained by adding together all of 

the measurements and dividing by the total number of measurements taken. 

Mathematically it is given as 

 

 

X
 

For ungrouped data  

n 
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Example 1 

 

Given the following set of ungrouped data: 
 
 
 

 

20, 18, 15, 15, 14, 12, 11, 9, 7, 6, 4, 1 

 
 
 

 

Find the mean of the ungrouped data. 
 

mean 20 18 2 15 14 12 11 9 7 6 4 1 12 

 

 

132
12 

 

 

11 

 

3.2.2 Arithmetic Mean of Grouped Data 
 

Arithmetic mean is quotient of sum of the given values by the number of the given values 

Mean of grouped data is calculated by dividing the sum of all observations by the number 

of observations. 

ArithmeticMean 
fx

f where 
 
 
 
 

 

x = Individual score and f =frequency 

 
 
 
 
 

Example2 

 

Find the mean of the following distribution: 
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x  2  4  7  8  13  

            
       

f  3  8  8  5  6  

            
             

 
 
 

 

Solution: 
 

 

Calculation of arithmetic mean 
 
     

x  F  Fx 

     
   

2  3  6 

     
   

4  8  32 

     
   

7  8  56 

     
   

8  5  40 

     
   

13  6  78 

     
     

  f = 30  fx = 212 

     
      

 

x 
fx

 
 

f 
 

212
31 7.06 
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Example 3 

 
 
 
 
 

 

scores x i f i x i  · f i 

     

10 - 20 15 1 15 

     

20 - 30 25 8 200 

     

30 -40 35 10 350 

     

40 -50 45 9 405 

     

50 -60 55 8 440 

     

60 -70 65 4 260 

     

70 -80 75 2 150 

     

   42 1 820 

     
 
 
 

 

The test scores of 42 students are shown in the table below. Calculate the mean 
 
 
 
 
 
 
 
 

 

Arithmetic mean can be used to calculate any numerical data and it is always unique. It is 

obvious that extreme values affect the mean. Also, arithmetic mean ignores the degree of 

importance in different categories of data. 
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3.2.3 Characteristics of the Arithmetic Mean 
 

Each measure of central tendency has its own particular characteristics. The arithmetic mean 

is fully representative of a frequency distribution as it is based on all and not merely some, 

of the observations. One weakness of the arithmetic mean is that it may give a wrong 

picture of the distribution e.g. take 10 boys’ visits to the dispensary are tabled as follows:- 

 
 

9,5,4,8,6,6,8,6,9,49 = 110 visits 

 

 

Arithmetic mean = 11, gives a false picture of the distribution since all but the tenth boy 

visited the local dispensary less than eleven times in the year. Another disadvantage is that 

it is not a physically possible value of the variable e.g. you cannot have a mean number of 

6.8 or 10.3 of girls or men. 

 
 

 

3.3 The Median 

 

Median is defined as the middle item of all given observations arranged in order. 

 

3.3.1 Median of Ungrouped Data 
 

For ungrouped data, the median is obvious. In case of the number of measurements is 

even, the median is obtained by taking the average of the middle. 

 

Example 6 

 

The median of the ungrouped data:: 20, 18, 15, 15, 14, 12, 11, 9, 7, 6, 4, 1 is 

 

12 11 2 

 

= 11.5 

 

3.3.2 Median of Grouped Data 
 

The median of a simple frequency distribution of a discrete variable such as the number of 

visits made by 100 mothers to a local dispensary is simple since we can identify it in the 

variable arranged in ascending order – see figures below:- 
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Number of visits by 100 mothers to a local dispensary  

    

Number of visits (variables) (x) Number of “Less than” 

 mothers cumulative  

 (frequency) (f) (frequency.)  

4 8  0 

5 12  8 

6 15  20 

7 25  35 

8 17  60 

9 13  77 

10 10  90 

11 -  100 

 

Median number of visits will lie between the 50th and 51st observations (100 is an even 

number). From the table, 35 mothers made less than 7 visits whereas 60 mothers had made 

less than 8 visits. The median is 7 visits. This shows half the mothers made 7 or fewer visits 

to the local dispensary and half the mothers made 7 or more visits to the local dispensary. 

 
 

 

For grouped data, the median can be found by first identify the class containing the median, 
then apply the following formula:  

   n C 
   

 

  

2 
   

 

 median  l  ( l 
2 

l )  

   
 

 1   

f m 
1  

 

       
 

where: l1  is the lower class boundary of the median class; 
 

 n  is the total frequency;      
 

 

C is the cumulative frequency just before the median 

class; fm is the frequency of the median; 

l2  is the upper class boundary containing the median. 
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Example           

The weight of 75 pigs was tabulated as follows:      
           

Weight of pig 0-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 Over 

          100 
           

No. Of pigs 1 7 8 11 19 10 7 5 4 3 
           

 
 

Calculate the median weight. 
 

Solution   
   

Weight (kg) variable Number of pigs (f) cumulative frequency 
   

0-20 1 1 

20-30 7 8 

30-40 8 16 

40-50 11 27 

50-60 19 46 

60-70 10 56 

70-80 7 63 

80-90 5 68 

90-100 4 72 

Over 100 3 75 

 75  

 

We need in calculating the median the weight of the 38th pig. This is the weight of 

n  1 th pig  
  
2 

 

Where n = total number of pigs. 
 

38th pig is somewhere in the 50 and under 60 kg class. 27 pigs weighed less than 50 kg. 
 

46 pigs weighed less than 60kg. 
 

Assumption made: weights of the pigs in the “50 and fewer than 60” classes are evenly 

spread across the class. 

Again, 27 weighed less than 50 kg 
 

We need to account for 38 pigs (to reach the median pig). Therefore, we need to consider, 11 

out of 19 pigs in the class (50 an 60) to arrive at the 38th pig. 
 

Median = 11/19, thus, of the way across the 50 and under 60 kg class 

interval. 50 



Median = 50 + 11/19 x 10 = 50 + 5.79 
 

= 55.79 
 

The median weight is 55.8 to one decimal place. Half of the pigs weighed less than 55.8 kg 

and half weighed 55.8 kg or more 

 
 
 

 

NB  

It is common practice when dealing with grouped data to calculate the median as the value 

of the n /2 item in the distribution , in this case the weight of the 37 ½ pig , although strictly 
 

speaking it should be 
n  1 th 

 

 
  

 Item  

2 

 
 

     
 

 
 
 
 

 

It is obvious that the median is affected by the total number of data but is independent of 

extreme values. However if the data is ungrouped and numerous, finding the median is 

tedious. Note that median may be applied in qualitative data if they can be ranked. 

 

3.4 The Mode 

 

Mode is the value of the variable with the highest frequency. It is at the highest peak of the 

frequency curve. The mode is easy to find in a discrete frequency distribution such as the 

numbers of visits made by 100 mothers to the local dispensary, where the mode is 7. Twenty 

five (25) mothers made 7 visits to the local dispensary whereas fewer mothers made any 

other number of visits (see table given earlier). 

 
 

For a grouped frequency distribution with a continuous variable, such as weights of pigs, 

(see tables given earlier) the mode can be estimated using a histogram – see below. The 

estimate of the mode from the graph is less than 55 kg. 
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Frequency  

(No. of pigs)  

15 

 
 
 

 

10 

 
 
 

 

5 

 
 
 

 

0 

 

 

0 

 

 

Mode  

Weight (Kg) 

A histogram showing the weight of 75 pigs 

 

Finding the Mode in a Grouped Frequency Distribution with a Continuous Variable 

Note that the graphical procedures can be replaced by the following formula:- 

 

 

f f 

L
 fz fz1 fz1   Fh 

i
 

 
 
 
 

 

Where: 
 

L = lower class boundary of the modal class, (i.e. 50) 
 

ί = Class interval (i.e. 10) 
 

fz = frequency of the modal class 
 

F1 = Frequency in the adjacent lower-class 
 

Fh= Frequency in the adjacent higher class 
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Substituting in the formula, we have the following 
 

  19 11 

50 19 11 19 10 10   

50 17
8

 10 

50 4.7 

54.7(2d.p)   

This is the same mode given in the graph. Advantage of the mode over the arithmetic mean: 

its value actually can occur e.g. the modal number of visits made by 100 mothers to the local 

dispensary were 7 whereas the arithmetic mean was 7.1. The mode is not affected by a few 

extreme values. The mode is easy to find for discrete variables since no calculation is 

required, but it can only be estimated for a continuous distribution. There can be more than 

one mode, e.g. the set numbers: 5,6,6,7,7,8,9,9,9,11,12 there are two modes: 6 and 9. 

Distributions with two modes are referred to as bimodal and their histograms have two 

distinct peaks. Not every set of numbers has a mode, e.g. in the set 5, 6, 7,8,9,11,12 each 

number occurs once only, so the mode does not exist. The mode is not used much in 

statistical work. 

 
 
 
 
 

 

3.5 Weighted Mean 

 

The weighted mean is a mean where there is some variation in the relative contribution of 

individual data values to the mean. Each data value (Xi) has a weight assigned to it (Wi). 

Data values with larger weights contribute more to the weighted mean and data values 

with smaller weights contribute less to the weighted mean. The formula is 

 
 
 
 
 
 
 
 
 

There are several reasons why you might want to use a weighted mean. 
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1. Each individual data value might actually represent a value that is used by 

multiple people in your sample. The weight, then, is the number of people 

associated with that particular value. 
 

2. Your sample might deliberately over represent or under represent certain 

segments of the population. To restore balance, you would place less weight 

on the over represented segments of the population and greater weight on the 

under represented segments of the population. 

3. Some values in your data sample might be known to be more variable (less 

precise) than other values. You would place greater weight on those data 

values known to have greater precision. 

 

Example 

 

Joan gets quiz grades of 79, 82, and 69. She gets a 65 on her final exam. Find the weighted 

mean if the quizzes each count for 10% and the final exam counts for 70% of the final grade. 

 

Solution 

 

The information can be organized as follows: 

 

X i Wi Wi Xi 

79 10 790 

82 10 820 

69 10 690 

65 70 4550 

  100 6850 
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XW 6850
100  

 

68.5% 
 
 

3.6 Geometric mean 

 

The geometric mean is an average calculated by multiplying a set of numbers and taking the 

nth root, where n is the number of numbers. 
 

A common example when the geometric mean is use is when averaging growth rates. 

The formula for the geometric mean:- 

 

G.M n [ x1][x2 ][x3 ]...[xn ]  
 

Where n is the number of observations made of the variable x and X 1 , X 2 …, Xn are the 

values of these observations 
 

For example, the geometric mean of numbers: 3, 25 and 45 

There are three observation, thus n = 3 
 

G.M 3 [3][25][45]  
 

= 15 
 

The geometric mean cannot be calculated if we have negative or zero observations. The 

geometric mean of a set of readings is always less than the arithmetic mean (unless all 

readings are identical) and is less influenced by very large values / items. 

 
 

Take the arithmetic mean of the following salaries: - in thousands of shillings per month 

6, 8, 10, 10,10,12,16 

Arithmetic mean = Kshs 10, 286 per month to the nearest shilling. The geometric men of the 

salaries are:- 
 
G.M 7 [ 6][8][10][10][10][12][16]  

 
7  9216000  

 

 

= 9.884 (to 3 decimal places) 
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The geometric mean of the salaries is Kshs.9884 per 

month (To the nearest shilling) 

Given the following salaries (i.e. in thousands of Kshs) in accompany per annum (p.a):-

6, 8, 10, 10,10,12,48 
 

The arithmetic mean salary is Kshs 14,857 to the nearest shilling. The geometric mean is:- 
 

G.M 7 [ 6][8][10][10][10][12][48  

 
7  27648000 
 

11.564 
 

11.564 to three decimal places 
 

The geometric mean salary is Kshs.11.564 per annum to the nearest shilling. The geometric 

mean is useful when only a few items in a distribution are changing: it’s in the 

circumstances more stable than the arithmetic mean. It is useful in the calculation of share 

indices and also in such calculations where data grows in geometric progression i.e. the 

population of a country 

 
 
 

Given population in a city 300,000 in 1980 and 400,000 in 1990, if we wanted to find out an 

estimate of the arithmetic mean of the population in 1985. 

300,000 + 400,000 = 700,000 
 

2 2 
 
= 350,00 
 

Here, we are making an assumption the population grows by the same number each year 

which is not correct. The same thing applies to money assuming its growing in a compound 

rate. The geometric mean for 1985 would be:- 
 

= 2√ 300,000 x 400,000 
 
= 371,080 
 
 

 

3.7 Harmonic mean 

 

Harmonic mean is another measure of central tendency and also based on mathematic 

footing like arithmetic mean and geometric mean. Like arithmetic mean and geometric 

mean, harmonic mean is also useful for quantitative data. Harmonic mean is defined in 
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following terms: 
Harmonic mean is quotient of “number of the given values” and “sum of the reciprocals of the given 

values”. 
 

Harmonic mean in mathematical terms is defined as follows:  

 

For Ungrouped Data For Grouped Data    
 

              
 

    
n 

     f
 

  
 

H.M   X 

         

   

HM X 
  

 

 

1 
 

      

  

 f  
 

      
 

   

 

 

 

   

 

 

 

 

         

       

x 

 

   x       
 

                
  

 
 
 

 

Example: 
 

Calculate the harmonic mean of the numbers: 13.5, 14.5, 14.8, 15.2 and 16.1 

 
 
 

 

Solution: 
 

The harmonic mean is calculated as below:  
 
 

x 

 

1 

 
 

  
 

    x  
 

    
 

13.2  0.0758 
 

    
 

14.2  0.0704 
 

    
 

14.8  0.0676 
 

    
 

15.2  0.0658 
 

    
 

16.1  0.0621 
 

    
 

  1 
 

Total  

 0.3417  

 
 

 x 
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n 

  
 

H.M   X 
 

 

   
 

 

 

1  
 

      
 

      

 

 

 

 

       
 

      x  
 

    
5 

     
 

H.M   X 

 

14.63 

 

 0.3417 
 

 
 
 

 

Example: 
 

Given the following frequency distribution of first year students of a particular 

college. Calculate the Harmonic Mean. 
 
 

Age (Years) 13 14 15 16 17  

 
 

      
 

Number of Students 2 5 13 7 3 
 

      
 

 

Solution: 
 

The given distribution belongs to a grouped data and the variable involved is ages of 

first year students. While the number of students Represent frequencies. 
 
 

Ages (Years) Number of Students 1  
 

x  f    x  
 

      
 

13  2 0.1538 
 

      
 

14  5 0.3571 
 

      
 

15  13 0.8667 
 

      
 

16  7 0.4375 
 

      
 

17  3 0.1765 
 

      
 

Total 

 

f   30  1 1.9916  

  
 

  x 
 

 

Now we will find the Harmonic Mean as 
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 f 

  

 30 

 
 

HM X    
 

 

 
f = 15.0631  15 

 

   1.9916 
 

   

 

 

 

    

       
 

    x    
  

Example: 
 

Calculate the harmonic mean for the given below:  
 
 

Marks 30-39 40-49 50-59 60-69 70-79 80-89 90-99  

 
 

        
 

f 2 3 11 20 32 25 7 
 

        
  

 

Solution: 
 

The necessary calculations are given below:  
 
 

Marks 
X F 

   f  
 

    

x 
 

      
 

      
 

30-39 34.5 2 0.0580 
 

      
 

40-49 44.5 3 0.0674 
 

      
 

50-59 54.5 11 0.2018 
 

      
 

60-69 64.5 20 0.3101 
 

      
 

70-79 74.5 32 0.4295 
 

      
 

80-89 84.5 25 0.2959 
 

      
 

90-99 94.5 7 0.0741 
 

      
 

Total  

f  100 

 f 1.4368  

   
 

  x 
 

 

Now we will find the Harmonic Mean as 

 
 
 

 
 

f
 
 
  100 

 

X  
 

  f   1.4368  69.60 
 

  

 

 

 

   
 

      
 

  x    
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3.8 Relationship Between The Arithmetic Mean, The Median And The Mode 
 

 

In a symmetrical distribution or normal distribution, that’s peaked in the centre, the 

arithmetic mean = median = mode. Other features of a normal distribution are: - It is bell 

shaped and is divided into equal parts by the mean, mode and median 

 
 

3.8.1 NORMAL DISTRIBUTION  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.8.2 POSITIVELY SKEWED DISTRIBUTION  
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3.8.3 NEGATIVELY SKEWED DISTRIBUTION  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

NB: 
 

 

If we have a positively skewed distribution, the arithmetic mean is not at the centre. The 

mean dragged to the right of centre by few high values of the variable e.g., an arithmetic 

mean of salaries for comparison purposes, majority (higher frequency) will be earnings less 

than average. The median salary would be more typical. 
 

In a negatively skewed distribution, the mean is reduced by the few small values of the 

variable frequency and hence will be left of the centre. The comparatively few old people 

features – of – a population in a developing country like Kenya make the mean of the 

population appear low, since in any case the majority in the population is young people. 

Again the median would be more representative. 

 
 

In a moderately skewed distribution the following relationship holds approximately:- 

 

 

(ARITHMETIC MEAN MINUS MODE = 3 (ARITHMETIC MEAN MINUS 

MEDIAN) OR 
 
(ARITHMETIC MEAN – MODE = 3 (ARITHMETIC MEAN - MEDIAN) 
 

This formula can be used for estimating the mode from the values of the mean and the 

median 
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3.9 Revision Exercise 

 

1. For the set of {8, 4, 2, 10, 2, 5, 9, 12, 2, 6} 

 

(a) calculate the mean; 
 

(b) find the mode; 
 

(c) find the median. 
 
 
 
 
2. The table below shows the relative frequencies of the ages of the students at 
Lisuvila High School. 
 

Age Relative 

(in years) frequency 
  

13 0.11 
  

14 0.30 
  

15 0.23 
  

16 0.21 
  

17 0.15 
  

Total 1 
  

 

(a) If a student is randomly selected from this school, find the probability that 
 

(i) the student is 15 years old; 
 

(ii) the student is 16 years of age or older. 
 

There are 1200 students at Lisuvila High School. 
 
 
 

 

3 The average tuition price of two colleges in Georgia is $7,700. In New York, the 

average tuition price of three colleges is $9,400. What is the weighted mean tuition 

price for all colleges together? 
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4. "Elaine gets quiz grades of 79, 82, and 69. She gets a 65 on her final exam. Find the 

weighted mean if the quizzes each count for 10% and the final exam counts for 70% of 

the final grade. 
 

5. Average cost of 5 pencils and 4 rubbers is Rs. 36. The average cost of 7 apples and 8  

mangoes is Rs. 48. What is the total cost of 24 apples and 24 mangoes? 

 

6. What are the special uses of G.M. and H.M. ? 

 

Calculate G.M. and H.M. for the following data :  

 

Value : 0—10 10—20 20—30 30—40 40—50 

Frequency : 8 12 20 6 4  
 

(Ans.: 49) 

 

What are the special uses of G.M. and H.M. ? 

 

7. A person walks 8 km. at 4 km. an hour, 6 km. at 3 km. an hour and 2 kms. at 4 km. 

an hour. Find his average speed per hour 
 
8. Draw a histogram for the following data and locate the mode :  
 
 

Marks   : 0—10 10—20 20—30 30—40 40—50 50—60 60—70 70—80 

Frequency: 4 10 16 22 20 18 8 2  
 

 

(Ans.: Mode = 36) 

 

(a) Write down the value of w. 
 

(b) Draw and label the Cumulative Frequency graph for this data 
 

9. (a) A man travels first 900 kms. of his journey by train at an average speed of 80 kms. per 

hour, next 2,000 kms. by plane at an average speed of 300 kms. per hour and finally, 20 kms. 

by Taxi at an average speed of 30 kms. per hour. What is his average speed for the entire 

journey ? 

 

(Ans.: 157.24) 
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(b) A man travelled by car for 3 days. He covered 480 miles each day, on the first day he 

drove for 10 hours at 48 miles an hour, on the second day he drove for 12 hours at 40 miles 

an hour and on the last day he drove 15 hours at 32 miles per hour. What was his average 

speed ? 

 

(Ans.: 38.92 m.p.h.) 

 
 

10. Compared to the previous year the overhead expenses went up by 32% in 1961 ; they 

increased by 44% in the next year and 50% in the following year. Calculate the average rate 

of increase in overhead expenses over the three years. Explain clearly the reason for the 

choice of average 

 

(Ans.: 40.5%) 

 
 

11. Calculate G.M. and H.M. for the following data :  
 

 

Value : 0—10 10—20 20—30 30—40 40—50 

Frequency : 8 12 20 6 4  
 
 

(Ans.: 49) 

 
 

12. The following table gives marks obtained by 70 students in Mathematics. Calculate the 

simple series: — 

 
 
 

 

Marks more than 70 60 50 40 30 20 

No. of students 7 18 40 40 63 70  

 

(Ans.: 46.39) 

 
 

13. Calculate distribution: Harmonic mean for the following frequency 
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Class Frequency Class Frequency 

0—10 5 40—50 7 

10—20 8 50-60 6 

20—30 10 60—70 3 

30—40 12    
 

(Ans.: H.M.= 19.71) 

 
 
 

 

14. From the results of two colleges A and B, state which of them is better.  
 

 

Name of the College A  College B  

examination Appeared Passed Appeared Passed 

M.A. 30 25 100 80 

M. Com. 50 45 120 95 

B.A. 200 150 100 70 

B. Com. 120 75 80 50 

Total 400 295 400 295  
 

Suggested References 

 

i. Quantitative Techniques Simplifiedby N.A Saleemi 

 
ii. Elementary Statistics by J.H Van Doorne 

 
iii. Probability and Statistics by R.S Pilaai 
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TOPIC 4 

 

MEASURES OF DISPERSION AND MEASURES OF KURTOSIS 

 

OBJECTIVES 

 

By then end of the topic, the learner should be able to: 

 

i) Calculate measures of dispersion such as 

 
Range 

 

Quartiles 

 
Deciles and Percentiles 

 
Mean deviation 

 

Variance and Standard deviation and their notations 

 
ii) State the properties of the standard deviation 

 

iii) Use the ogive to read the quartiles and percentiles 

 
iv) Define kurtosis and classify curves as mesokurtic, leptokurtic or platykurtic. 

 
 

4.1 Introduction 

 

It is important to note that a measure of tendency alone does not give sufficient information 

about a population. Given that heights of men in Nairobi and Mombasa are 180cm, we may 

rush to conclude that the heights of the men are the same in the two cities because of the 

two equal means. We need, however, to have more information about the populations of 

men in Nairobi and Mombasa i.e. range of heights, how many short and tall men are there 

in the two cities, in brief: we need to know the measures of dispersion or variation to give a 

better answer!. 

 

4.2 Range 
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The range is simply a measure of dispersion i.e. between the highest or biggest value of a 

variable and the lowest or smallest one respectively. 

 

When we are dealing with a continuous variable the range can only be found accurately 

from the original data. Its value can only be estimated from a grouped frequency 

distribution because of its simplicity, it’s used in quality control work. 

 

4.3 The Quartile Deviation Or Semi-Interquartile Range 

 

The quartile deviation of a distribution is the middle 50% of the distribution -in this case any 

extreme values of the distribution are left out. Quartiles are values of the variable that make 

up 25%, 50% or 75% of the population all the way through the distribution. There are three 
 

(3) quartiles, first as Q1, second as Q2 and the third is Q3. The second quartile we’ve 

discussed: is the median, i.e., the value of the variable that belongs to the item half-way 

through the distribution. Given the following figures:- 

 

WEIGHTS OF 75 PIGS   

   

Weight (kg) (variable) No. of pigs (frequency) “Less than” cumulative 

  frequency 

   

Under 20 1 1 

   

20 and under 30 7 8 

   

30 and under 40 8 16 

   

40 and under 50 11 27 

   

50 and under 60 19 46 

   

60 and under 70 10 56 

   

70 and under 80 7 63 

   

80 and under 90 5 68 

   

 67  



 

90 and under 100 4 72 

   

Over 100 3 75 

   
 
 
 

 

1
 

75
 

Quarter through the distribution 

4 
 
 

 

 n  1 th 
 

=    
 where n is the number of pigs  

4 

 
 

     
  

75 1 76 

 
  
  4 4 

 

= 19 

 

The 19th pig belongs to: “40 kg under 50 kg” class. Before this class 16 pigs have been 

accounted for, thus, less (19 -16 =3 pigs not accounted for out of 11 in the “40 and under 

50kg”class before we reach the first quartile). 

 

Q1 40 11
3 X10 

 
 
 
 

= 40  2.73 

 
= 42.73 

 

We conclude one quarter of the pigs weighed less than 42.73kg. 

 

  3(n  1) th 
 

Similarly the third quartile is the  
 

 i.e. the weight of the 57th pig. This is the 1st  

4 

 

    
 

 

item in the “70 and under 80kg” class.ie 
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Q 70 
57

 
56 X10 

3 10 

 

= 70  1.43 

 
= 71.43 

 

Thus, three quarters of the pigs weighed less than 71.43 kg so that one quarter weighed 

71.43 kg or more. 

 
 
 
 

The interquartile range is the difference between Q3 and Q1 

Q3 – Q1 = 71.43 – 42.73 

 

= 28.70kg 
 

3(n  1) th 
4 

 
 
 
 
 
 

This tells us that the middle 50% of the data spans 28.70kg. The quartile deviation is the 

semi-inter quartile range: 

Quartile deviation = 

Q
3 

Q
1  = 28.70

 
 

2 2 

 

= 14.35kg 

 

NB: We can use the ogive to find approximate values of the quartile – see graph below. 

Quartile deviation gives us an idea of the variability in the values of a population. We’re, 

therefore, able to make comparisons and say how variable the values in one distribution are 

compared to another. Since the quartile deviation looks at the middle 50% of the data, its 

value is unaffected by extreme values and can be used when we’re open-ended classes at 

the edges of a distribution. It is used as a measure of dispersion when the media is chosen as 

the approximate measure of location, for instance, when dealing with income statistics. 
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NB: take the following heights; 

 

Median pig weight – 55.8 kg 

 

quartile (¼) weight – 42.7kg 

 

three quartiles (¾) weight – 71.4kg 

 
 
 

 

The median weight is not the arithmetic mean of the quartile weights. Only when the 

distribution is symmetrical is the median is exactly half –way the two quartile values. 

 

OGIVE OF WEIGHTS OF 75 PIGS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The quartiles and other measures can also be read from the ogive. 
 
 
 
 

 

4.4 Deciles and Percentiles 

 

Deciles and percentiles are used in the sub division of income and employment statistics in 

similar fashion to quartiles. The deciles are the values which divide the total frequency into 
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tenths and the percentiles are the values which divide the total frequency into hundredths. 

Deciles and percentiles are useful when we are dealing with a very large number of 

observations, preferably thousands. 

 
 
 
 

Deciles are denoted by D1, D2, D3 ………….D9. The third decile D3 e.g., is the value which 
 

30% of the data lies. Method of calculation follows the same pattern as calculation of the 

median and quartiles e.g. 30% of 75 pigs, we get D3 as the weight of the 22.5 pig or rather the 

22nd pig or 23rd pig, the fraction is of no consequence. 

 

NB: 22.5 pigs is in the “40 and 50kg” class (-see figures on page ??): 
 
 

 

D3 40 
22.5

 
16 

X10 

11 

 

40  
6

11
.5

 X10 

 

 

= 40  5.9 

 
= 45.9 kg  

 

Therefore, 30% of the pigs weighed less than 45.9kg. 

 

Percentiles are denoted by P1, P2, …, P99 and, for example, P6 is the value below which 6% of 

the data lies and P66 is the value below which 66% of the data lies. U.K. income statistics use 

percentiles: P1, P2, P5, P95 and P99. These values give useful information about the lowest and 

highest incomes. 

 

4.5 Mean Absolute Deviation 

 

The Mean Absolute Deviation or simply Mean deviation measures how far on average the 

readings are from the arithmetic mean. The median is very occasionally used instead of the 
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arithmetic mean. If the data have a small spread about the mean, the mean deviation has a 

lower value than for data which show large variations about the mean. 

 

To calculate the mean deviation , 

 

Find the arithmetic mean, 

 

 

of the data 

 

 

Find the deviation of each reading from 

 
 

, 

 
 

i.e., work out the difference between each 

  

reading and 
 

 

Find the arithmetic mean of the deviations, ignoring their signs, .e. the visits made to the 

local dispensary by 10 mothers is as follows: 

 

8, 6, 5, 5, 7, 4, 5, 9, 7, 4 = 60 visits 

 

Arithmetic mean = 10
60

 6 

 
 
 
 

 

CALCULATION OF THE MEAN DEVIATION FOR UNGROUPED DATA 

 

 MEAN DEVIATIONS DEVIATIONS 
 

NO. OF VISITS 
 

X - 
IGNORING 

 

  
 

8 6 2 2 
 

    
 

6 6 0 0 
 

    
 

5 6 -1 1 
 

    
 

5 6 -1 1 
 

    
 

7 6 1 1 
 

    
 

4 6 -2 2 
 

    
 

5 6 -1 1 
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9 6 3 3 

    

7 6 1 1 

    

4 6 -2 2 

    

Totals 60  0 14 

    
 
 

If we ignore the signs above, the sum of the deviations is 14 

 

Mean Absolute deviation: 
14

10 1.4 

 

For ungrouped data the formula for the mean deviation is:- 

 
  

 

 

x 

   
 

Mean Absolute deviation (M.A.D) = 
 x   

 

       

f 

  
 

    
  

 

Where x x stands for the absolute deviation, that’s the deviation ignoring the sign.  
 

 

In calculating the mean deviation of a grouped frequency distribution the formula is 

modified to include the class frequencies:- 

 
f x  x  

 

M.A.D 
 

 

Where: X in this formula is the class mid point. Given the earlier example of a grouped 

frequency distribution of the weights of 75 pigs, assumption is made that the open-ended 

classes are of the same length as adjacent classes. 

 

Calculation of the Mean Absolute Deviation 

 

WEIGHT (kg) Mid No. of pigs           
 

(variable) point (frequency) 

fx 

         
 

    x x  f x x   
 

  f           
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0-20 15 1 15 42.4 42.4 

      

20–30 25 7 175 32.4 226.8 

      

30–40 35 8 280 22.4 179.2 

      

40–50 45 11 485 12.4 136.4 

      

50–60 55 19 1045 2.4 45.6 

      

60–70 65 10 650 7.6 76.0 

      

70–80 75 7 525 17.6 123.2 

      

80–90 85 5 425 27.6 138.0 

      

90 – 100 95 4 380 37.6 150.4 

      

Over 100 105 3 315 47.6 142.8 

      

Totals  75 4305  1260.8 

      
 

 

f x x   

M .A.D f 
 

 
4305

75 

57.4kg 

 
f x  x  

 

M.A.D 

 

1260.8 

75 

 
 

16.8kg to one decimal place) 
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The mean absolute deviation can be used to compare the variation of different distributions 

buts its not useful in statistical work because negative signs in the deviations are ignored 

when its calculated. Mean absolute deviation suffers the same problem as the arithmetic 

mean, i.e. Its value is distorted by extreme values of the variable. 

 

4.6 Population and sample 

 

In statistics, a sample is a subset of a population. Typically, the population is very large, 

making a census or a complete enumeration of all the values in the population impractical 

or impossible. The sample represents a subset of manageable size. Samples are collected and 

statistics are calculated from the samples so that one can make inferences or extrapolations 

from the sample to the population. This process of collecting information from a sample is 

referred to as sampling. 

 
Care must be taken when dealing with the signs involving population and sample 

parameters. The table below shows the different notations. 

 
 
 
 
 Population Sample 

 

       
 

Mean 

     

 
 

 X   x 
 

Variance  2
  s2

 
 

Standard Deviation    s 
 

 
 
 

 

While analyzing variance and standard deviation, we shall assume that all the data is taken 

from a sample. 
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4.7 Variance and standard deviation 

 

Unlike range and quartiles, the variance combines all the values in a data set to produce a 

measure of spread. The variance (symbolized by s2) and standard deviation (the square root 

of the variance, symbolized by s) are the most commonly used measures of spread. 

 

We know that variance is a measure of how spread out a data set is. It is calculated as the 

average squared deviation of each number from the mean of a data set. For example, for the 

numbers 1, 2, and 3 the mean is 2 and the variance is 0.667. 

 

[(1 - 2)2 + (2 - 2)2 + (3 - 2)2] &divide 3 = 0.667 

 
 

[Squaring deviation from the mean and dividing by the number of observations = variance] 

 
 

Variance (s2) = average squared deviation of values from mean 
 
 

Calculating variance involves squaring deviations, so it does not have the same unit of 

measurement as the original observations. For example, lengths measured in metres (m) 

have a variance measured in metres squared (m2). 

 

Taking the square root of the variance gives us the units used in the original scale and this is 

the standard deviation. 

 

Standard deviation (s) = square root of the variance 

 
 

Standard deviation is the measure of spread most commonly used in statistical practice 

when the mean is used to calculate central tendency. Thus, it measures spread around the 

mean. Because of its close links with the mean, standard deviation can be greatly affected if 

the mean gives a poor measure of central tendency. 

 

Standard deviation is also influenced by outliers one value could contribute largely to the 

results of the standard deviation. In that sense, the standard deviation is a good indicator of 

the presence of outliers. This makes standard deviation a very useful measure of spread for 

symmetrical distributions with no outliers. 
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Standard deviation is also useful when comparing the spread of two separate data sets that 

have approximately the same mean. The data set with the smaller standard deviati n has a 

narrower spread of measurements around the mean and therefore usually has 

comparatively fewer high or low values. An item selected at random from a data set whose 

standard deviation is low has a better chance of being close to the mean than an item from a 

data set whose standard deviation is higher. 

 

Generally, the more widely spread the values are, the larger the standard deviation is. For 

example, imagine that we have to separate two different sets of exam results from a class of 

30 students the first exam has marks ranging from 31% to 98%, the other ranges from 82% to 

93%. Given these ranges, the standard deviation would be larger for the results of the first 

exam. 

 

Standard deviation might be difficult to interpret in terms of how big it has to be in order to 

consider the data widely spread. The size of the mean value of the data set depends on the 

size of the standard deviation. When you are measuring something that is in the millions, 

having measures that are "close" to the mean value does not have the same meaning as 

when you are measuring the weight of two individuals. For example, a measure of two 

large companies with a difference of $10,000 in annual revenues is considered pretty close, 

while the measure of two individuals with a weight difference of 30 kilograms is considered 

far apart. This is why, in most situations, it is useful to assess the size of the standard 

deviation relative to the mean of the data set. 

 

Although standard deviation is less susceptible to extreme values than the range, standard 

deviation is still more sensitive than the semi-quartile range. If the possibility of high values 

(outliers) presents itself, then the standard deviation should be supplemented by the semi-

quartile range. 

 

4.7.1 Properties of standard deviation 

 

When using standard deviation keep in mind the following properties. 
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Standard deviation is only used to measure spread or dispersion around the mean of 

a data set. 

Standard deviation is never negative. 
 

Standard deviation is sensitive to outliers. A single outlier can raise the standard 

deviation and in turn, distort the picture of spread. 

For data with approximately the same mean, the greater the spread, the greater the 

standard deviation. 

If all values of a data set are the same, the standard deviation is zero (because 

each value is equal to the mean). 

 

When analyzing normally distributed data, standard deviation can be used in conjunction 

with the mean in order to calculate data intervals. 

 

If = mean, s = standard deviation and x = a value in the data set, then 

 
 

about 68% of the data lie in the interval: - s < x < + s. 
 

about 95% of the data lie in the interval: - 2s < x <  + 2s. 
 

about 99% of the data lie in the interval: - 3s < x < + 3s. 
 
 

4.7.2 The Variance of Discrete variables 

 

The variance for a discrete variable made up of n observations is defined as:  
 
 
 
 
 
 
 

 

The standard deviation for a discrete variable made up of n observations is the positive 

square root of the variance and is defined as: 
 
 
 
 
 
 
 

 

Use this step-by-step approach to find the standard deviation for a discrete variable. 
 

78 



1. Calculate the mean. 
 

2. Subtract the mean from each observation. 
 

3. Square each of the resulting observations. 
 

4. Add these squared results together. 
 

5. Divide this total by the number of observations (variance, s2). 
 

6. Use the positive square root (standard deviation, s). 
 
 

Example 1 – Standard deviation 
 
 

A hen lays eight eggs. Each egg was weighed and recorded as follows: 
 

 

60 g, 56 g, 6l g, 68 g, 51 g, 53 g, 69 g, 54 g. 
 
 

a) First, calculate the mean:  
 
 
 
 
 
 
 
 
 
 

 

b) Now, find the standard deviation.  
 

 

Table 1. Weight of eggs, in grams  
 

Weight (x)  (x -  )  (x -  )2 
       

60 1 1 

 

56  -3  9 
     

   

61  2  4 
     

   

68  9  81 
     

   

51  -8  64 
     

   

53  -6  36 
     

   

69  10  100 
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54  -5  25 
       

472 320  
 

 

Using the information from the above table, we can see that  
 
 
 
 

 

In order to calculate the standard deviation, we must use the following formula:  
 
 
 
 
 
 
 
 
 
 
 
 

 

4.7.3 The Variance of Grouped variables 

 

Example 2 – Standard deviation calculated using a frequency table 
 
 

Thirty farmers were asked how many farm workers they hire during a typical harvest 

season. Their responses were: 

 

4,5,6,5,3,2,8,0,4,6,7,8,4,5,7,9,8,6,7,5,5,4,2,1,9,3,3,4,6,4  
 

 

Thirty farmers were asked how many farm workers they hire during a 

typical harvest season. Their responses were: 

 Workers (x)  Tally  Frequency (f)  (xf)  (x -  )  (x -  )2  (x -  )2f  
 

                  
 

              

 0 
     

 1  0  -5  25  25 
 

 

       
 

                  
 

              

 1 
     

 1  1  -4  16  16 
 

 

       
 

                  
 

              

 2       2  4  -3  9  18  
 

                  
 

              

 3       3  9  -2  4  12  
 

                  
 

              

 4 
     

 6  24  -1  1  6 
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 5   
 

  5  25  0  0  0  

  
 

               
 

          

 6     4  24  1  1  4 
 

               
 

          

 7     3  21  2  4  12 
 

               
 

          

 8     3  24  3  9  27 
 

               
 

          

 9     2  18  4  16  32 
 

               
 

            

      30      150  152 
 

                
 

                  
 

To calculate the mean:  
 
 
 
 
 
 
 
 
 
 

 

To calculate the standard deviation:  
 
 
 
 
 
 
 
 
 
 
 
 

 

Example 3 – Standard deviation using grouped variables (continuous or discrete) 
 
 

information, calculate the mean and standard deviation of hours spent watching television 

by the 220 students. 
 
 

Table 3. Number of hours per week 
 

spent watching television 
 

Hours  Number of students 
     

10–14 2  
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 15–19  12  
     
    

 20–24  23  
     
    

 25–29  60  
     
    

 30–34  77  
     
    

 35–39  38  
     
    

 40–44  8  
     
      
 

a. First, using the number of students as the frequency, find the midpoint of 

time intervals. 

b. Now calculate the mean using the midpoint (x) and the frequency (f). 
 
 

Note: In this example, you are using a continuous variable that has been rounded to the 

nearest integer. The group of 10&ndash14 is actually 9.5 to 14.499 (as the 9.5 would be 

rounded up to 10 and the 14.499 would be rounded down to 14). The interval has a length of 

5 but the midpoint is 12 (9.5 + 2.5 = 12). 
 
 
 
 
 
 
 
 
 
 

 

6,560=(2X12+12X17+23X22+60X27+77X32+38X37+8X42) 

 
 

Then, calculate the numbers for the xf, (x - ), (x - )2 and (x - )2f formulas. 
 
 

Add them to the frequency table below..  
 

 

Table 4. Number of hours spent watching television 
 

 Hours  Midpoint (x)  Frequency (f)  Xf  (x -  )  (x -  )2  (x -  )2f  
               
         

 10–14  12  2  24  -17.82  317.6  635.2  
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 15–19  17  12  204  -12.82  164.4  1,972.8 
              
        

 20–24  22  23  506  -7.82  61.2  1,407.6 
              
        

 25–29  27  60  1,620  -2.82  8.0  480.0 
              
        

 30–34  32  77  2,464  2.18  4.8  369.6 
              
        

 35–39  37  38  1,406  7.18  51.6  1,960.8 
              
        

 40–44  42  8  336  12.18  148.4  1,187.2 
              
           

     220  6,560      8,013.2 
              
               

 
 
 

 

Example 4 
 
 

Use the information found in the table above to find the standard deviation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note: During calculations, when a variable is grouped by class intervals, the midpoint of the 

interval is used in place of every other value in the interval. Thus, the spread of observations 

within each interval is ignored. This makes the standard deviation always less than the true 

value. It should, therefore, be regarded as an approximation. 

 

4.8 Kurtosis 
 

 

Kurtosis refers to the degree of flatness of a frequency curve. It helps to find out how a 

particular distribution conforms to the normal curve. It shows the extent to which the curve 

is more peaked or more flat topped than the normal curve. From the stand point of kurtosis, 

the normal curve is mesokurtic i.e. of “intermediate peakedness” When the curve 
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of distribution is relatively flatter than the normal curve, it is said to have kurtosis. When 

the curve or polygon is relatively more peaked, it is said to “lack kurtosis” Thus the c ncept 

of kurtosis helps us in studying the peakedness of distribution. 

 

The following diagram illustrates the scope of three different curves mentioned above: - 

 
 
 
 
 
 
 
 
 
 
 
 

 

NATURE OF KURTOSIS  

Y  
 

 

 Leptokurtic Curve 
 

 Mesokurtic Curve 

 

 Platykurtic Curve 

 
 
 
 
 
 
 

 

 X 

X = Median = Mode 
 
 

Where  

B2 = 3 Mesokurtic curve 
 

B2 < 3 Platykurtic curve 
 

B2 > 3 Leptokurtic curve 
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4.9 Revision Exercise 

 

1.The cumulative frequency table below shows the ages of 200 students at a college. 
 

Age Number of Students Cumulative Frequency 
   

17 3 3 
   

18 72 75 
   

19 62 137 
   

20 31 m 
   

21 12 180 
   

22 9 189 
   

23 5 194 
   

25 6 n 
   

 

(a) What are the values of m and n? 
 

(b) How many students are younger than 20? 
 

 

(c) Find the value in years of the lower quartile. 
 

(d) Calculate the standard deviation 
 

 

2.The heights of 200 students are recorded in the following table. 
 

Height (h) in Frequency 

cm  
  

140 ≤ h < 150 2 
  

150 ≤ h < 160 28 
  

160 ≤ h < 170 63 
  

170 ≤ h < 180 74 
  

180 ≤ h < 190 20 
  

190 ≤ h < 200 11 
  

200 ≤ h < 210 2 
  

 

(a) Write down the modal group. 
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(b) Calculate an estimate of the mean and standard deviation of the heights. 
 
 

 

3. The table below shows the number and weight (w) of fish delivered to a 

local fish market one morning.  

weight (kg) frequency cumulative 

  frequency 
   

0.50 ≤ w < 0.70 16 16 

0.70 ≤ w < 0.90 37 53 

0.90 ≤ w < 1.10 44 c 

1.10 ≤ w < 1.30 23 120 

1.30 ≤ w < 1.50 10 130 
   

 

(a) (i)   Write down the value of c.  
(1) 

 

(ii) On graph paper, draw the cumulative frequency curve for this data. 
Use a scale of 1 cm to represent 0.1 kg on the horizontal axis and 1 cm to 
represent 10 units on the vertical axis. Label the axes clearly.  

(4) 

 

(iii)  Use the graph to show that the median weight of the fish is 0.95 kg.  

(1) 

 

(b) (i) The zoo buys all fish whose weights are above the 90th percentile. 
How many fish does the zoo buy?  

(2) 

 

(ii) A pet food company buys all the fish in the lowest quartile. What is 
the maximum weight of a fish bought by the company?  

(3) 

 

(c) A restaurant buys all fish whose weights are within 10% of the median 

weight. 
 

(i) Calculate the minimum and maximum weights for the fish bought 
by the restaurant.  

4 (2) 

 

(ii) Use your graph to determine how many fish will be bought by 
the restaurant.  

5 (3) 
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4. The cumulative frequency curve for this data is drawn below.  
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height in cm 
 

 

(c) Write down the median height. 
 

(d) The upper quartile is 177.3 cm. Calculate the interquartile range.  

(e) Find the percentage of students with heights less than 165 cm. 
 
 
 
 
 

 

Suggested References 

 

i. Quantitative Techniques Simplified by N.A Saleemi 

 
ii. Advanced Mathematics Statistics by SteveDobbs and Jane Miller 

 
iii. Elementary Statistics by J.H Van Doorne 
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TOPIC 5 

 

Equations and Inequalities 

 

OBJECTIVES 

 

By the end of the topic the learner should be able to 

 

i) Identify different types of variables 

 
ii) Solve linear equations 

 
iii) Solve linear inequalities 

 
iv) Represent linear inequalities graphically. 

 
 

5.1 Definition of an equation 

 

An equation is a mathematical statement that relates two algebraic expressions involving at 

least one variable. 

 

It is a statement showing the equality of two expressions. 
 
 

5.2 Properties of equality 
 

 

For any real numbers a, b and c 

 

1. Addition property: If a=b, then a+ c= b + c 

 
2. Subtraction property: : If a=b, then a- c= b - c 

 
3. Multiplication property: If a=b, then ac = bc 

 
4. Division property: : If a=b, then a/c = b/c 

 
5. Substitution property: If a=b, then either may replace the other in any statement without 

changing the truth or falsity of the statement. 

 

5.3 Terms used in equations 
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(a) Unknown  

These are the variables whose values are not given. They are found by solving the equation 

e.g. in the equation 4x + 5y =40 and are unknowns. x and y . 

 

(b) Constants 

 

They are fixed figures, which are shown on the left hand side of unknowns or separately. 
 

From the equation 4x + 5y =40, 4, 5 and 40 are constants. 

 

(c) Coefficients 

 

They are those figures, which are shown on the left hand side of unknowns. From the 

equation 4x + 5y =40 , 4 and 5 are coefficients of and respectively. 
 

(d) Index 
 
 

It is the power of an unknown. It is shown on the right hand side on top of any unknown 

e.g. in the equation, 4x3 +2x + 3 has an index or power 3. 

 

5.4 Variables 
 
 
 
 

5.4.1 Definition of a variable 
 

It is a measurable characteristic that assumes different values among the subjects. 

 

5.4.2 Types of variables 
 

1. Independent variables / Predictor variables 

 

It is a variable that a researcher manipulates in order to determine its effect or influence 

on another variable. They predict the amount of variation that occurs in another 

variables. 

 

Types of independent variables 

 

i. Experimental variables: They are variables which the researcher has manipulative 

control over them. Are commonly used in biological and physical sciences e.g. 

influence of amount of fertilizer on the yield of wheat, influence of alcohol on 

reaction time. 
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ii. Measurement types of independent variables: Are variables, which have already 
 

occurred. They have fixed manipulative and uninfluenceable properties. Most f the 

variables are either environmental or personal e.g. age, gender, marital status, race, 

colour, geographical location, nationality, soil type, altitude etc. (e.g. influence of 

nationality on choice of food). 

 

2. Dependent variables / criterion variables 

 

They attempt to indicate the total influence arising from the effects of the independent 

variable. It varies as a function of the independent variable e.g. influence of hours 

studied on performance in a statistical test, influence of distance from the supply center 

on cost of building materials. 

 

3. Discrete variables 

 

They are variables, which can only assume whole numbers. They are always counted e.g. 

number of cars, children, trees books etc. 
 

4. Continuous variables 

 

They are variables, which can assume any value in a specific range. They are always 

measured e.g. height, weight, weight, radius, distance etc. 

 

5. Extraneous variables 

 

They are those variables that affect the outcome of a research study either because the 

researcher is not aware of their existence or if the researcher is aware, she or he has no 

control over them. 

 

6. Control variables / concomitant / covariate or blocking variables 

 

They are extraneous variables that are built into the study. They are introduced to 

increases the validity of the data and to leads to more convincing generalizations. 

 

5.5 Types of equations 
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There are three major types of equations. They include:- 

 

(a) Linear / simple equations 

 
(b) Quadratic equations 

 
(c) Simultaneous equations 
 
 

For this topic, we shall only deal with linear equations. 
 

5.6 Linear / simple equations 

 

They are equations with one unknown and the index of the unknown is one. It is of the form 

ax + b =0. Where a and b are constants and the solution is obtained by writing ax= -b 

 
 

And getting a =  provided that a   
 
 

 

Example 1: Solve for x in the following equation. 
 

x - 4 = 10  
solution 

 

Add 4 to both sides of the equation: 
 

x = 14 

 

The answer is x = 14 

 

Check the solution by substituting 14 in the original equation for x. If the left side of 

the equation equals the right side of the equation after the substitution, you have 

found the correct answer. 

 
 
 

 

Example 2: Solve for x in the following equation.  
 
 
 

 

Add 4 to both sides of the equation: 
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Divide both sides by 2:  
 
 
 

 

The answer is x = 7. 
 

Check the solution by substituting 7 in the original equation for x. If the left side of the 

equation equals the right side of the equation after the substitution, you have found 

the correct answer. 
 

2(7)-4=14-4=10. 
 

Example 3: Solve for x in the following 

equation 5 x - 6 = 3 x - 8 

 

Subtract 3x from both sides of the equation:  
 
 
 
 

 

Add 6 to both sides of the equation:  
 
 
 
 

 

Divide both sides by 2:  
 
 
 
 

 

The answer is x = - 1 

 

Add 500 to both sides of the equation:  

510 = 51x 

Divide both sides by 51: 

x 
510

51  10 

 

The answer is x = 10. 
 

Example 5: Solve for x in the following equation  
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Get rid of the denominators by multiplying both sides by 28, the smallest number that 

4,7, and 28 will divide into evenly. 

 

Recall the line that separates the numerator and the denominator also functions as a 

parenthesis. It instructs the reader to treat the numerator as one number and the 

denominator as one number. 
 
 
 
 
 
 
 
 

Simplify:  
 
 
 
 
 
 
 
 
 

 

Add the x terms and the constants on the left side of the equation.  
 
 
 
 

 

Subtract 5x from both sides of the equation:  
 
 
 

 

Add 69 to both sides of the equation:  
 

 

Divide both sides by 49:  
 
 
 
 

 

The answer is x=3. 
 
 
 

 

Example6: Solve for x in the following 

equation 2(3x - 7) + 4 (3 x + 2) = 6 (5 x + 9 ) + 3 

Complete multiplication. 
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Group like terms on each side of the equal sign.  
 
 
 
 

 

Subtract 18 x from both sides of the equation.  
 
 
 
 

 

Subtract 57 from both sides of the equation.  
 
 
 
 

 

Divide both sides of the equation by 12 and simplify.  
 
 
 
 
 
 
 
 
 
 

 

Example 5: Solve for x in the following equation  
 
 
 

 

Solution 
 

 

Add  3 to both sides of the equation:  2x  3  5 

Divide both sides by  2 , 

 
 
 
 
 

 

5.7 Linear inequalities 

 

Definition: 
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An inequality is a mathematical statement related to another by the operation They can be 

solved using the graphical method. ≥ > ≤ or, < 

 

5.7.1 Properties of inequalities 

 

Let a, b and c be real numbers. 
 
 

1. Transitive Property 
 

If a < b and b < c then a < c 

 

2. Addition Property 
 

If a < b then a + c < b + c 

 

3. Subtraction Property If 

a < b then a - c < b - c 

 
4. Multiplication Property 

 
i. If a < b and c is positive then c*a < c*b 

 
ii. If a < b and c is negative c*a > c*b 

 
 

Note: If each inequality sign is reversed in the above properties, we obtain similar 

properties. If the inequality sign < is replaced by <= ( less than or equal) or the sign > 

is replaced by >= ( greater than or equal ), we also obtain similar properties. 

 

5.7.2 Solving Linear Inequalities 

 

Example 1: Solve the inequality 

 
 

6x - 6 > 2x + 2 

 
 

Solution 
 
 

Given 
 

6x - 6 > 2x + 2 
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Add 6 to both sides and simplify (Property 2 

above) 6x > 2x + 8 

 

Subtract 2x to both sides and simplify ( Property 3 above) 

4x > 8 

 

Multiply both sides by 1/4; and simplify ( Property 4-i above) 

x > 2 

 

Conclusion  

The solution set consists of all real numbers in the interval (2 , + infinity). 
 
 
 

 

Example 2: Solve the inequality 

 

2(3x + 2) - 20 > 8(x - 3) 

 

Solution 

 

Given  

2(3x + 2) -20 > 8(x - 3) 

 

Multiply factors and group like terms 
6x + 4 -20 > 8x - 24 

6x - 16 > 8x - 24 

 

Add 16 to both sides and simplify ( Property 2 

above) 6x > 8x - 8 

 

Subtract 8x to both sides and simplify ( Property 3 above) 

-2x > -8 

 

Multiply both sides by -1/2 and REVERSE (-1/2 is negative) the inequality sign and 

simplify ( Property 4-ii above) 

x < 4 

 

Conclusion The solution set consists of all real numbers in the interval (- infinity , 4) 

 
 

Example 3: Solve the double inequality 

 

-3 < 4(x + 2) - 3 < 9 
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Solution 

 

Given  

-3 < 4(x + 2) - 3 < 9 

 

Multiply factors and group like terms 
-3 < 4x + 8 - 3 < 9 

-3 < 4x + 5 < 9 

 

Subtract 5 to all three terms and 
simplify -3 - 5 < 4x + 5 - 5 < 9 - 5 

-8 < 4x < 4 

 

Divide all three terms by 4 

-2 < x < 1 

 

Conclusion  

The solution set consists of all real numbers in the interval (- 2 , 1) 

 
 
 

 

5.8 Graphing A Linear Inequality 
 

 

Step 1: Graph the boundary line 

 

Essentially you graph the boundary line the same as if the problem was a linear equation. 

Assume that there is an equal sign and use an appropriate method to graph the line. Unless 

the directions to a problem indicate otherwise, you can use any method to graph it. Two 

ways of graphing linear inequalities are 
 

i) plotting any three points or 
 

ii) Using the x and y intercepts. 
 
 

When you draw the boundary line, you need to have a way to indicate if the line is included 

or not in the final answer. 

 

For a solid boundary line, < or > are used in the inequality. Otherwise the dashed line is 

used. 
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Example 1: Graph the inequality for x +y < 6 

 
 

The graph below shows the boundary line for x + y < 6: 
 

(note that this does not show the inequality part)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If the problem does not include where it is equal, then you will use a dashed boundary line. 
 

In other words, if you have < or >, you will have a dashed line for your boundary line. 
 
 

This graph below shows the boundary line for x + y < 6: 
 

(note that this does not show the inequality part)  
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In either case, you still graph the line the same. You just have to decide if you are needing a 

solid line or a dashed line. 

 

The boundary line separates the rectangular coordinate system into two parts. One of those 

parts will make the inequality true and be it’s solution. 
 
 
 
 

 

Step 2: Try out in a point that is not on the boundary line 
 

Pick a test point on either side of the boundary line and plug it into the original problem. 
 

This will help determine which side of the boundary line is the solution. 
 

 

Step 3: Shade in the answer to the inequality 
 

If you get a true statement when you plug in the test point in step 2, then you have found a 

solution. Shade the region that the test point is in. 

 

If you get a false statement when you plug in the test point in step 2, then you don’t have a 

solution. Shade in the region that is on the other side of the test point. 

 

It doesn’t matter what you use for the test point as long as it is not on the boundary line. 

You want to keep it as simple as possible. 

 

 

Example 2: Graph the inequality 

 

. 
 

Step 1: Graph the boundary line. 
 

In this case the boundary line is x + y = 2 
 

Using thee points for x as shown below, we obtain the corresponding values of y 
 

      

 x  y  (x, y) 
      
    

 2  0  (2, 0) 
      
    

 0  2  (0, 2) 
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 1  1  (1, 1) 
      
       

 

Since the original problem has a >, this means it DOES NOT include the boundary line. 
 
 

So are we going to draw a solid or a dashed line for this problem? It looks like it will have 

to be a dashed line. 

 

Putting it all together, we get the following boundary line for this problem:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 2: Plug in a test point that is not on the boundary line. 
 

Note how the boundary line separates it into two parts. 
 
 

An easy test point would be (0, 0). Note that it is a point that is not on the boundary line. In 

fact, it is located below the boundary line. 

 

Let’s put (0, 0) into the original problem and see what happens:  
 
 
 
 
 

*Replacing x and y with 0 
 

*False statement 

 
 
 

Step 3: Shade in the answer to the inequality. 
 

Since our test point (0, 0) made our inequality FALSE, this means it is not a solution. 
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Since it has to be on one side or the other of the boundary line, and it is not below it, then 

our solution would lie above the boundary line. This means we will shade in the part that 

is above it. 

 

Note that the gray lines indicate where you would shade your final answer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example 2: Graph the inequality 
 

. 
 

Step 1: Graph the boundary line. 
 

We are going to use the intercepts to help us graph the boundary line. Again, you can use 

any method that you want, unless the directions say otherwise. 

 

When I’m working with only the boundary line, I will put an equal sign between the two 

sides to emphasize that we are working on the boundary line. That doesn’t mean that I 

changed the problem. When we put it all together in the end, I will put the inequality back 

in. 

 

What value is y on the x-intercept? 
 

If you said 0, you are correct. 
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*Replace y with 0 

 
 
 

 

*Inverse of multiplication by 2 is div. by 2 

*x-intercept 

 

x-intercept is (3, 0) 
 

 

What is the value of x on the y-intercept? 
 

If you said 0, you are correct.  
 
 
 
 
 

*Replace x with 0 

 
 

*Inverse of multiplication. by -3 is div. by -3 

 
 
 

 

*y-intercept 

 

 

y-intercept is (0, -2). 
 

Plug in 1 for x to get a third solution:  
 

 

*Replace x with 1 

 
 
 

 

*Inverse of add 2 is sub. 2 

 
 

*Inverse of multiplication by -3 is div. by -3 

 
 
 
 
 
 

102 



 
 
 
 
 
 

1, -4/3) is another solution on the boundary line. 
 

However, it advisable not to use fractional points that are not easy to graph like this one. In 

such cases, try another value of x that would yield a better solution 

 
 

 

Solutions: 
 
 
 

 
      

 x  y  (x, y) 
      
    

 3  0  (3, 0) 
      
    

 0  -2  (0, -2) 
      
    

 1  -4/3  (1, -4/3) 
      
      

 

Since the original problem has a <, this means it DOES include the boundary line. 
 
 

So are we going to draw a solid or a dashed line for this problem? It looks like it will have 

to be a solid line. 

 

Putting it all together, we get the following boundary line for this problem: 
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Step 2: Plug in a test point that is not on the boundary line. 
 

Note how the boundary line separates it into two parts. 
 
 

An easy test point would be (0, 0). Note that it is a point that is not on the boundary line. In 

fact, it is located above the boundary line. 

 

Let’s put (0, 0) into the original problem and see what happens:  
 
 
 
 
 

*Replace x and y with 0 
 

*True statement 

 

 

Step 3: Shade in the answer to the inequality. 
 

Since our test point (0, 0) made our inequality TRUE, this means it is a solution. 
 
 

Our solution would lie above the boundary line. This means we will shade in the part that is 

above it. 

 

Note that the gray lines indicate where you would shade your final answer. 
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Example 3: Graph the inequality . 
 

Step 1: Graph the boundary line. 
 

If we wrote this as an equation, it would be x = 4. This is in the form x = c, which is one of 

our “special” lines. 

 

Remember what type of line x = c graphs is. 
 

It comes out to be a vertical line. 
 

Every x’s value on the boundary line would have to be 4. 
 
 

Solutions: 

 
      

 x  y  (x, y) 
      
    

 4  0  (4, 0) 
      
    

 4  1  (4, 1) 
      
    

 4  2  (4, 2) 
      
      

 
 

 

Since the original problem has a <, this means it DOES NOT include the boundary line. 
 
 

So are we going to draw a solid or a dashed line for this problem? It looks like it will have 

to be a dashed line. 
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Putting it all together, we get the following boundary line for this problem:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2: Plug in a test point that is not on the boundary line. 
 

Note how the boundary line separates it into two parts. 
 
 

An easy test point would be (0, 0). Note that it is a point that is not on the boundary line. In 

fact, it is located to the left of the boundary line. 

 

Let’s put (0, 0) into the original problem and see what happens 

 

 

*Replace x with 0  
 

*True Statement 

 

 

Step 3: Shade in the answer to the inequality. 
 

Since our test point (0, 0) made our inequality TRUE, this means it is a solution. 
 
 

Our solution would lie to the left of the boundary line. This means we will shade in the part 

that is to the left of it 

 

Note that the gray lines indicate where you would shade your final answer. 
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Applications of linear inequalities are mostly found in linear programming. 
 
 

1.7 Revision Exercise 

 

1. Graph the following Inequalities: 

i) y x + 3 

 
 

ii) y > 2x – 1 
 
 
iii) 2y 4x + 6 
 
 
 
iv) 2x + y > 4  
 
 

2. Which inequality is represented by the graph below? 
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Suggested references 

 

i. Linear Programming: Foundations and Extensions by Robert J. Venderbei 

 

ii. Quantitative Techniques Simplified by N.A Saleemi 
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TOPIC 6 

 

Linear programming 

 

Objectives 

 

By the end of the topic the learner should be able to: 
 

i. Formulate an appropriate LP problem 

 

ii. Graph the constraint inequalities 

 
iii. Identify the solution space or feasible region which satisfies all the constraints 

simultaneously 

 
iv. Locate the solution points on the feasible region. 

 
v. Evaluate the objective function at each of the corner points. 

 
vi. Identify the optimum value of the objective function. 

 
 

6.1 Introduction 

 

Definition 

 

It is a mathematical technique that deals with the optimization of a linear function of 

variables known as objective function to a set of linear inequalities known as 

constraints. 

 

t is a method of determining an optimum programme of inter-dependent activities in view 

of available resources. 

 
 

 

6.1.1 Basic parts of a linear programming problem 
 

i. The objective function: it describes the primary purpose of the formulation i.e. to 

maximize profit or to minimize cost. 
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ii. The constraint set: It is a system of equalities and / or inequalities describing the 

conditions under which optimization is to be accomplished e.g. machine hours, man-

hours, materials etc. 

 
 

 

6.1.2 Assumptions of Linear programming 
 

i. Linearity: Costs, revenues or any physical properties, which form the basis of the 

problem, vary in direct proportion with the quantities or numbers of components 

produced. 

 

ii. Divisibility: Quantities, revenues and costs are infinitely divisible i.e. any fraction or 

decimal answer is valid. 

 
iii. Certainty: The technique makes no allowance for uncertainty in the estimate made. 

 
iv. Positive solutions: Non-negativity constraints are introduced to ensure only positive 

values are considered. 

 
v. Interdependence between demand products is ignored, products may be 

complementary or a substitute for one another. 

 
vi. Time factors are ignored. All production is assumed to be instantaneous. 

 
vii. Costs and benefits which cannot be quantified easily, such as liquidity, good will and 

labour stability are ignored. 

 
 

 

6.2 Advantages of Linear Programming 

 

i. Helps in attaining the optimum use of productive factors 

 

ii. Improves the quality of decisions 

 
iii. Improves the knowledge and skill of tomorrow’s executives 

 
iv. It highlights the bottlenecks in the production process 
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v. It gives insight and perspective into problem situations 

 

vi. Enables one to consider all possible solutions to problems. 

 
vii. Enables one to come up with better and more successful decisions 

 
viii. It’s a better tool for adjusting to meet changing conditions. 

 
 
 

 

6.3 Limitations of Linear Programming 

 

i. It treats all relationships as linear 

 

ii. It is assumed that any activity is infinitely divisible 

 
iii. It takes into account single objective only i.e. profit maximization or cost minimization 

 
iv. It can be adopted only under the condition of certainty i.e. that the resources available, 

per unit contribution, costs etc are known with certainty. This does not hold in real 

situations. 

 
 

 

6.4 Applications of Linear Programming 

 

Linear programming can find use in many areas where decisions need to be made based on 

scarcity of recourses. A few areas are mentioned below:. 
 

i. Business and industry e.g. in the petroleum industry 

 

ii. Food processing industry: to determine the optimal mix of feeds 

 

iii. Paper and textile industry: To determine the optimal cutting method to minimize trim 

losses 

 
iv. Transport industry: To determine the best route 

 
v. Financial institutions – to determine investment plans. 

 
vi. Advertising media: assigning advertising expenditures to different media plans 
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vii. Politics- campaign strategies 

 
viii. Auditing – to find the number of financial audits 

 
ix. Agriculture- amount of fertilizer to apply per acre 

 
x. Hospital scheduling- number of nurses to employ 

 
xi. Marketing – determining the best marketing strategy 

 
xii. Crude oil refining 

 
 
 

 

6.5 Mathematical formulation of Linear Programming problems 

 

If there are n decision variables and m constraints in the problem, the mathematical 

formulation of the LP 

 

is:- 

 

Optimization (Max or Min) Z=c1x1+c2x2+…cnxn 

 

Subject to the constraints 

 

a11x1 +a12x2+…a1nxn < b1 

 

a21x1 +a22x2+…a2nxn < b2 

 
 
 

 

⋮ 
 
 
 
 
 

 

am1x1 +am2x2+…amnxn < bm 

 

and x1, x2,…xn > 0 

 

Where 
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xi- decision variable – 

 

Cj- constant representing per unit contribution of the objective function of the 

 

aij- -constant representing exchange coefficient of the jth decision variable in the ith 

constraint 

 

bi---constant representing ith constraint requirement or availability 

 

Solutions to LP problems 

 

LP problems can be solved by the help of the following methods: 

 

i. Graphical method 

 

ii. Simplex method 

 

In this study we shall concentrate on the graphical method. 
 
 
 

 

6.6 Solving Linear Programming Problems Graphically. 
 

In order to solve a LP problem graphically, the following procedure is adopted:- 

 

i. Formulate the appropriate LP problem 

 

ii. Graph the constraint inequalities as follows: treat each inequality as though it were an 

equality and for each equation, arbitrarily select two sets of points. Plot each of the 

points and connect them with appropriate lines. 

 
iii. Identify the solution space or feasible region which satisfies all the constraints 

simultaneously. For ≤ constraints, this region is below the lines and for ≥ constraints; 

the region is above the lines. 

 
iv. Locate the solution points on the feasible region. These points always occur at the 

corner points of the feasible region. 

 
v. Evaluate the objective function at each of the corner points. 
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vi. Identify the optimum value of the objective function. 
 
 
 

 

Example 

 
 

At the start of the current week there are 30 units of X and 90 units of Y in stock. Available 

processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 

35 hours. 

 

The demand for X in the current week is forecast to be 75 units and for Y is forecast to be 95 

units. Company policy is to maximize the combined sum of the units of X and the units of Y 

in stock at the end of the week. 

 

Formulate the problem of deciding how much of each product to make in the 

current week as a linear program. 
 

Solve this linear program graphically. 
 
 

Solution 

 

Let 

 

x be the number of units of X produced in the current week 

 

y be the number of units of Y produced in the current week 

 

then the constraints are: 
 

50x + 24y <= 40(60) machine A time  

30x + 33y <= 35(60) machine B time 

x >= 75 - 30 

i.e. x >= 45 so production of X >= demand (75) - initial stock (30), which ensures we 

meet demand 

y >= 95 - 90  

i.e. y >= 5 so production of Y >= demand (95) - initial stock (90), which ensures 

we meet demand 
 

The objective is: maximize (x+30-75) + (y+90-95) = (x+y-50) 
 

i.e. to maximize the number of units left in stock at the end of the week 
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It is plain from the diagram below that the maximum occurs at the intersection 

of x=45 and 50x + 24y = 2400 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6.7 Revision exercise 

 

1. A firm is engaged in producing two products A and B. each unit of product A requires 2 

kg of raw material and 4 labour hours for processing, whereas each unit of product B 

requires 3 kg of raw material and 3 hours of labour, of the same type. Every week, the 

firm has an availability of 60 kg of raw material and 96 labour hours. One unit of product 

A sold yields Sh. 40 and one unit of product sold gives Sh. 35 as profit. Formulate this 

problem as a linear programming problem to determine as how many units of each of the 

products should be produced per week so that the firm can earn the maximum profit. 

Assume that there is no marketing constraint so that all that is produced can be sold. 

 
2. The Kenya Agricultural Research Institute suggested to a farmer to spread out at least 

4800 kg of a special phosphate fertilizer and not less than 7200 kg of a nitrogen fertilizer 

to raise productivity of crops in his fields. There are two sources for obtaining these 
 

mixtures A and B. Both of these are available in bags weighing 100 kg each and they cost  
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Sh. 40 and Sh 24 respectively. Mixture A contains phosphate and nitrogen equivalent of 

20 kg and 80 kg respectively, while mixture B contains these ingredients equivalent of 50 

kg each. Determine how many bags of each type the farmer should buy in order to obtain 

the required fertilizer at minimum cost. 

 

Suggested References 

 

i. Linear Programming: Foundations and Extensions 
 

ii. Quantitative Techniques Simplified by N.A Saleemi 
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Topic 7 

 

UTILITY AND UTILITY FUNCTIONS 

 

Objectives 

 

By the end of the topic the learner should be able to 

 

i) Define and relate utility to consumption 

 
ii) Relate utility to demand 

 
iii) Describe utility functions 

 
iv) State the assumptions of utility 

 
v) Explain the types of utility. 

 
 

Utility theory provides a methodological framework for the evaluation of alternative 

choices made by individuals, firms and organizations. Utility refers to the satisfaction that 

each choice provides to the decision maker. Thus, utility theory assumes that any decision is 

made on the basis of the utility maximization principle, according to which the best choice 

is the one that provides the highest utility (satisfaction) to the decision maker. 

 

7.1 Utility Theory in Consumer Behavior 

 

Utility theory is often used to explain the behavior of individual consumers. In this case the 

consumer plays the role of the decision maker that must decide how much of each of the 

many different goods and services to consume so as to secure the highest possible level of 

total utility subject to his/her available income and the prices of the goods/services. 

 

7.2 Utility Theory and Demand 

 

In addition to providing an explanation of consumer disposition of income, utility theory is 

useful in establishing individual consumer demand curves for goods and services. A 

consumer's demand curve for a good or service shows the different quantities that 
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consumers purchase at various alternative prices. Factors that are held constant are 

consumers' tastes and preferences, income, and price. 

 

7.3 Utility Functions 

 

In all cases the utility that the decision maker gets from selecting a specific choice is measure 

by a utility function U, which is a mathematical representation of the decision maker's 

system of preferences such that: U(x) > U(y), where choice x is preferred over choice y or 

U(x) = U(y), where choice x is indifferent from choice y—both choices are equally preferred. 

 

Utility functions can be either cardinal or ordinal. In the former case, a utility function is 

used to derive a numerical score for each choice that represents the utility of this choice. In 

this setting the utilities (scores) assigned to different choices are directly comparable. For 

instance, a utility of 100 units towards a cup of tea is twice as desirable as a cup of coffee 

with a utility level of 50 units. In the ordinal case, the magnitude of the utilities (scores) are 

not important; only the ordering of the choices as implied by their utilities matters. For 

instance, a utility of 100 towards a cup of tea and a utility level of 50 units for a cup of coffee 

simply state that a cup of coffee is preferred to a cup of tea, but it cannot be argued that a 

cup of tea is twice as desirable as a cup of coffee. Within this setting, it is important to note 

that an ordinal utility function is not unique, since any monotonic increasing transformation 

of an ordinal utility function will still provide the same ordering for the choices. 

 

7.4 Assumptions on Preferences 

 

Irrespective of the type of utility function, utility theory assumes that preferences are 

complete, reflexive and transitive. The preferences are said to be complete if for any pair of 

choices x and y, one and only one of the following be stated: (1) x is preferred to y, (2) y is 

preferred to x, or (3) x and y are equally preferred. The preferences are said to be reflexive if 

for any pair of choices x and y such that x equally preferred to y, it is concluded that y is 

also equally preferred to x. Finally, the preferences are said to be transitive if for any three 

choices x, y, z such that x is preferred over y, and y is preferred over z, it is concluded that x 
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is preferred over z. The hypotheses on reflexivity and transitivity imply that the decision 

maker is consistent (rational). 

 

7.5 Marginal Rate of Substitution 

 

A further assumption of utility theory is that decision makers are willing to trade one choice 

for another. The existing trade-offs define the marginal rate of substitution. As example 

suppose that two investment projects are considered by a decision maker. Project x has a 

return of 6 percent and a risk of 4 percent, whereas the return for project y is 5 percent and 

its risk is 2 percent. Furthermore assume that the decision maker considers both projects to 

be equally preferred. With this assumption it is clear that the decision maker is willing to 

increase the risk by 2 percent in order to improve return by 1 percent. Therefore, the 

marginal rate of substitution of risk for return is 2. In real world situations, the marginal 

rates of substitution are often decreasing. Such situations correspond to diminishing 

marginal utilities (marginal utility is defined as the change in total utility resulting from a 

one-unit change in consumption of the good or service). In the above example, we can 

assume that the decision maker is willing to take higher risks in order to get higher return, 

but only up to a specific point which is called saturation point. Once the risk has reached 

that point, the decision maker would not be willing to take any higher risk to increase return 

and therefore the marginal rate of substitution at this risk level would be zero 

 

7.6 Multi-Attribute Utility Theory 

 

The traditional framework of utility theory has been extended over the past three decades to 

the multi-attribute case, in which decisions are taken by multiple criteria. Multi-attribute 

utility theory has been evolved as one of the most important topics in multiple criteria 

decision making with many real world applications in complex real world problems. 

 

The concept of utility can be used to analyze individual consumer behavior, to explain 

individual consumer demand curves as well as in modeling the decision makers' 

preferences. In all cases, it is assumed that some choices are evaluated and the best one is 

identified as the choice that maximizes the utility or satisfaction. The utility theory has been 
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a research topic of major importance for the development of economics, decision theory, and 

management and it still attracts the interest of both practitioners and academic researchers. 

 
 
 
 
 
 
 

 

7.7 Revision Questions 

 

1. Define ‘utility’ 
 

 

2. Explain the meaning 

of i) Complete utility 
 
ii) Transitive utility 

iii) Reflexive utility 

3. Distinguish between cardinal and ordinal utility. 
 
 

Suggested References: 
 

i. Quantitative Methods for Business and Economics 
 

ii. Aleskerov, F., and B. Monjardet. Utility Maximization, Choice and Preference. 

Heidelberg: Springer Verlag, 2002. 
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Sample Papers 

 

Sample Paper 1 
 
 

 

UNIT TITLE : QUANTITATIVE TECHNIQUES UNIT CODE : SBC 212 

 

TIME: 2 HOURS 

 

Instructions: Answer Question One and Any Other Two Questions 

 

QUESTION ONE (Compulsory) (30 marks) 
 
 

 

a) Solve the inequality 
 

2(x – 3) < 5x + 3 (3 marks) 
 

b) In each of the Venn diagrams, shade the region indicated. 

 

(i) A   B  

 

A B 
 
 

 

(ii) The complement of (A   B)  

 

A B 
 
 

 

iii) The complement of (A   B)  

 

A B 
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(iv)  A (B C)  
 

A B 

 

   C 
 

 

(8 marks) 

 

(c) Given a set of data; 2,9,8,4,7,6 

 

i) Calculate the arithmetic mean (2 marks) 

ii) Calculate the geometric mean (2 marks) 

iii) Calculate the harmonic mean (2 marks) 

iv) State the median (1 mark ) 

v) Calculate the standard deviation. (3 marks) 

 
 

 

d) A publisher is planning to produce a new textbook. The fixed costs are Sh. 

320,000 and the variable costs are Sh. 31.25 per book. The wholesale price will be 

Sh. 43.75 per book. How many books must the publisher sell to break-even? 
 

(5 marks) 
 
 

 
e) A senior lecturer is set to give a series of four lectures. If he doesn’t give any one 

lecture, the lecture is given by his assistant. He is certain to give the first 

lecture. The probability of giving the second lecture is 0.45. If he gives the 

second lecture, the probability of giving the third lecture is 0.7, otherwise it is 

0.4. If he gives the third lecture, the probability of giving the fourth lecture is 

0.35 otherwise it is 0.7.Calculate the probability that the lecturer 

 
 

i) Gives all the four lectures 
 

ii) Gives two lectures only 
 

Iii) Gives lecture one and lecture four only. (5 marks) 
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QUESTION TWO  (20 marks) 

 

Let ξ = {x : 1 ≤ x < 17, x   }. 
 

a) P , Q and R are the subsets of ξ such that 
 

P = {multiples of four}; 
 

Q = (factors of 36}; 
 

R = {square numbers}. 
 

(a) List the elements of 
 

(i) ξ 
 

(ii) PQR.  
(2) 

 

(b) Describe in words the set P   Q.  
(1) 

 

(c) (i) Draw a Venn diagram to show the relationship between sets P, Q and 
R.  

(2) 

 

(ii) Write the elements of ξ in the appropriate places on the Venn diagram.  

(1) 
 
 
 

 

b) In a club with 60 members, everyone attends either on Tuesday for Drama 

(D) or on Thursday for Sports (S) or on both days for Drama and Sports. 
 

One week it is found that 48 members attend for Drama and 44 members attend 

for Sports and x members attend for both Drama and Sports. 
 

(i) Draw and label fully a Venn diagram to illustrate this information.  
(3) 

 

(ii) Find the number of members who attend for both Drama and Sports.  
(2) 

 

(iii) Describe, in words, the set represented by (D   S)'. 
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(2) 

 

(iv) What is the probability that a member selected at random attends for 
Drama only or Sports only?  

(3) 

 

The club has 28 female members, 8 of whom attend for both Drama and Sports. 

What is the probability that a member of the club selected at random 

(i) is female and attends for Drama only or Sports on 
 

(ii) is male and attends for both Drama and Sports? (2) 
 

 

QUESTION THREE (20 marks) 

 

a) A market researcher investigating consumers’ reference for three brands of 

beverages namely: coffee, tea and cocoa, in Kisii Town gathered the following 

information. From a sample of 800 consumers, 230 took coffee, 245 took tea and 

325 took cocoa, 30 took all the three beverages, 70 took coffee and cocoa, 110 took 

coffee only, 185 took cocoa only. 
 

Required: 
 

(i) Present the above information in a Venn diagram 
 

(ii) The number of customers who took tea only 
 

(iii) The number of customers who took coffee and tea only 
 

(iv) The number of customers who took tea and cocoa only 
 

(v) The number of customers who took none of the beverages. (10 marks) 
 

 

b) A public transportation company has been experimenting on a possibility of 

developing a system of charging fares .The demand functions, which expresses 

the ridership as a function of fare charged is given below: 

 
 

Q=10,000 – 125p 
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Where Q equals the average number of riders per hour and p equals the fare in 

shillings. 

(i) Determine the fare, which should be charged in order to maximize hourly bus fare 

revenue. 
 

(ii) What is the expected maximum revenue? 
 

(iii) How many riders per hour are expected under this figure? (10 marks) 

 
 
 
 
 
 
 

 

QUESTION FOUR (20 marks) 

 

The age of each patient over the age of 14 visiting a doctor’s practice in one day was 

recorded as 

 

18 18 76 15 72 45 48 62 

21 27 45 43 28 19 17 37 

35 34 23 25 46 56 32 18 

24 34 32 56 29 43   
 
 
 
 
 
 
 

 

Use a tally chart to produce a grouped frequency distribution with age groups 15-19, 20-24, 
 

25-29 etc. (3marks) 
 
 

a. What is the relative frequency of patients in the age groups 70-74? 

 
 
 

(2marks) 
 

b. Express the number of patients in the age group 25-29 as a 

percentage (2marks) 

c.  Calculate the mean and the standard deviation (6marks) 
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d. Calculate the median 
 

e. Calculate the Pearson’s coefficient of skewness. 

 
(3marks) 
 

(4marks 

 

 

QUESTION FIVE (20 marks) 
 

 

a) State Four advantages and Three disadvantages of Linear programming.  (7 marks) 
 

 

b) A firm is engaged in producing two products A and B. each unit of product A requires 

2 kg of raw material and 4 labour hours for processing, whereas each unit of product B 

requires 3 kg of raw material and 3 hours of labour, of the same type. Every week, the 
 

firm has an availability of 60 kg of raw material and 96 labour hours. One unit of 

product A sold yields Sh. 40 and one unit of product sold gives Sh. 35 as profit. 

Formulate this problem as a linear programming problem to determine as how many 

units of each of the products should be produced per week so that the firm can earn the 

maximum profit. Assume that there is no marketing constraint so that all that is 
 

produced can be sold. ( 13 marks) 
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Sample paper 2 
 

UNIT TITLE : QUANTITATIVE TECHNIQUES 

 
 

UNIT CODE : SBC 212 

 
 

TIME: 2 HOURS 

 

Instructions: Answer Question One and Any Other Two Questions 

 

QUESTION ONE (Compulsory) (30 marks) 

 

a) Given  the set of integers,  the set of rational numbers,  the set of real numbers. 
 

(a) Write down an element that belongs to  U . 
 

(b) Write down an element that belongs to  U  
 

(c) Write down an element that belongs to I 
 

(d) Use a Venn diagram to represent the sets ,  and . 
 

( 6  

marks) 

 

b) 
 

a one 
 

8 two 
 

1 

8 
1
 three 

 
8 

 

b 

8 
 

four 
 

1 

1 8  
8  five 

 
six 

 

(a) Find the values of a and b in the diagram. 
 

(b) Both dice are thrown. Calculate the probability that two fours appear on 

top. 
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(c) One of the dice is thrown once. The result is not a two or a three. What is the 

probability that it is a six? 
 

(8 marks)  

c) The universal set U is defined as the set of positive integers less than 10. The subsets 

A and B are defined as: 
 

A = {integers that are multiples of 3}  

B = {integers that are factors of 30} 

 

(a) List the elements of 
 

(i) A; 
 

(ii) B. 
 

(b) Place the elements of A and B in the appropriate region in the Venn 

diagram below. 
 

U  
 

 

A B 
 
 
 
 
 
 
 
 

 

 ( 4 marks) 

d) Given the set of data, 2,3,4,5 

Calculate the  

i) Harmonic mean  

ii) Geometric mean  

iii) Standard deviation (7 

marks)  
 

e) State three assumptions of linear programming. 

(3marks) 
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QUESTION TWO 

 

a) The following results were obtained from a survey concerning the reading habits 

of students. 
 

60 % read magazine P  

50 % read magazine Q 

50 % read magazine R 

30 % read magazines P and Q 

20 % read magazines Q and R 

30 % read magazines P and R 

10 % read all three magazines 

 

Represent all of this information on a Venn diagram.  
(5) 

 
 
 
 
 

 

b) The Venn diagram below shows the number of students studying Science (S), 
 

Mathematics (M) and History (H) out of a group of 20 college students. Some of 

the students do not study a ny of these subjects, 8 study Science, 10 study 

Mathematics and 9 study History. 
 

 

U 

 
S 1 M  

4 A  
2  

1 3 

 
3 H 

 
 
 

 

(a) (i)   How many students belong to the region labeled A? 
 

(ii) Describe in words the region labeled A. 
 

(iii) How many students do not study any of the three subjects?  
(5) 

 

(b) Draw a sketch of the Venn diagram above and shade the region which 
represents S H.  

(1) 
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(c) Calculate n(S   H).  
(2) 

 

This group of students is to compete in an annual quiz evening which tests 

knowledge of Mathematics, Science and History. The names of the twenty 

students are written on pieces of paper and then put into a bag. 
 

(d) One name is randomly selected from the bag. Calculate the probability 

that the student selected studies 
 

(i) all three subjects; 
 

(ii) History or Science.  

(2) 

 

(e) A team of two students is to be randomly selected to compete in the quiz 

evening. The first student selected will be the captain of the team. Calculate 

the probability that 
 

(i) the captain studies all three subjects and the other team member 

does not study any of the three subjects; 
 

(ii) one student studies Science only and the other student studies 

History only; 
 

(iii) the second student selected studies History, given that the captain 
studies History and Mathematics.  

(5) 

(Total 15 marks) 

 

QUESTION THREE  

Today Philip intends to go walking. The probability of good weather (G) is 
3

4 . If 

the weather is good, the probability he will go walking (W) is 
17

20 . If the 

weather forecast is not good (NG) the probability he will go walking is 
1

5 . 
  

(a) Complete the probability tree diagram to illustrate this information. 
 
 

 

(b) What is the probability that Philip will go walking? 
 

(Total 5 marks) 
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W   
17 
20 

 
G   

3 
4 

 
NW  
W  

 

 
NG 

 
 
 
 

NW 

 

A box contains 10 coloured light bulbs, 5 green, 3 red and 2 yellow. One light bulb is 

selected at random and put into the light fitting of room A. 
 

(a) What is the probability that the light bulb selected is 
 

(i) green?  

(1) 

 

(ii) not green?  
(1) 

 

A second light bulb is selected at random and put into the light fitting in room B. 
 

(b) What is the probability that 
 

(i) the second light bulb is green given the first light bulb was green?  
(l) 

 

(ii) both light bulbs were not green?  

(2) 

 

(iii) one room had a green light bulb and the other room does not have a 
green light bulb?  

(3) 

 

A third light bulb is selected at random and put in the light fitting of room C. 
 

(c) What is the probability that 
 

(i) all three rooms have green light bulbs?  
(2) 

 

(ii) only one room has a green light bulb?  
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(3) 

 

(iii)  at least one room has a green light bulb?  
(2) 

(Total 15 marks) 

 

QUESTION FOUR 

 

a) In a club with 60 members, everyone attends either on Tuesday for Drama (D) or on 

Thursday for Sports (S) or on both days for Drama and Sports. 
 

One week it is found that 48 members attend for Drama and 44 members attend 

for Sports and x members attend for both Drama and Sports. 
 

(a) (i)   Draw and label fully a Venn diagram to illustrate this information.  
(3) 

 

(ii) Find the number of members who attend for both Drama and Sports.  

(2) 

 

(iii)  Describe, in words, the set represented by (D S)'.  
(2) 

 

(iv) What is the probability that a member selected at random attends for 
Drama only or Sports only?  

(1) 

 

(8 marks) 

 

b) Let 
 

ξ = {positive integers less than 15}; 
 

X= {multiples of 2}; 
 

Y = {multiples of 3}. 
 

(a) Show, in a Venn diagram, the relationship between the sets ξ, X and Y.  

(1) 

 

(b) List the elements of: 
 

(i) X Y  
(1) 

 

(ii) X  Y.  

(1) 
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(c) Find the number of elements in the complement of (X  Y)I  
(1) 

( 4 marks) 

 

c) The cost of producing a mathematics textbook is $ 15 (US dollars) and it is then 

sold for $ x. 
 

(a) Find an expression for the profit made on each book sold.  

(2) 

 

A total of (100 000 – 4000x) books is sold. 
 

(b) Show that the profit made on all the books sold is 
 

P = 160 000x – 4000x2 – 1500 000. 

(c) (i) Find 
d
d
P

x . 
 
 

(2) 

 

(ii) Hence calculate the value of x to make a maximum profit  

(2) 

 

(d) Calculate the number of books sold to make this maximum profit.  

(2) 

(8 marks) 
 
 
 
 
 

 

d) From the results of two colleges A and B, state which of them is better. (5 

marks)        

        

Name of the College A  College B   

examination Appeared  Passed Appeared  Passed  

M.A. 30  25 100  80  

M. Com. 50  45 120  95  

B.A. 200  150 100  70  

B. Com. 120  75 80  50  

Total 400  295 400  295  
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QUESTION FIVE 
 

 

(a) The heights of 200 students are recorded in the following table. 
 

Height (h) in Frequency 

cm  
  

140 ≤ h < 150 2 
  

150 ≤ h < 160 28 
  

160 ≤ h < 170 63 
  

170 ≤ h < 180 74 
  

180 ≤ h < 190 20 
  

190 ≤ h < 200 11 
  

200 ≤ h < 210 2 
  

 

(a) Write down the modal group.  

(1) 

 

(b) Calculate an estimate of the mean and standard deviation of the heights.  

(4) 

 

The cumulative frequency curve for this data is drawn below. 
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(c) Write down the median height.  
(1) 

 

(d) The upper quartile is 177.3 cm. Calculate the interquartile range.  

(2) 

(e) Find the percentage of students with heights less than 165 cm. 

(2) 

(Total 10 marks) 
 

 

(b) The table below shows the number of left and right handed tennis players in a 

sample of 50 males and females. 
 

 Left handed Right Total 

  handed  
    

Male 3 29 32 
    

Female 2 16 18 
    

Total 5 45 50 
    

 

If a tennis player was selected at random from the group, find the probability that 

the player is 

 

(a) male and left handed; 
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(b) right handed; 
 

(c) right handed, given that the player selected is female. 
 

(4 marks)  
(c) 

 

i) What is linear programming? 

 

Ii ) State three assumptions of linear programming 

 

iii) State tow limitations of linear programming (6 marks) 
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